一位同學(xué)拿了兩塊45°三角尺△MNK,△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=4.
(1)如圖(1),兩三角尺的重疊部分為△ACM,則重疊部分的面積為
4
4
,周長為
4+4
2
4+4
2

(2)將圖(1)中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖(2),此時重疊部分的面積為
4
4
,周長為
8
8

(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖(1)和圖(2)的圖形,如圖(3),請你猜想此時重疊部分的面積為
4
4

分析:(1)利用勾股定理列式求出AB,再根據(jù)等腰直角三角形的性質(zhì)可得CM⊥AB,AM=CM=
1
2
AB,然后求解即可;
(2)設(shè)MN與AC的交點為D,BC與MK的交點為G,根據(jù)旋轉(zhuǎn)角是45°求出∠AMD=45°,然后根據(jù)同位角相等,兩直線平行求出DM∥BC,從而判定DM是△ABC的中位線,然后求出DM=
1
2
BC,同理求出MG=
1
2
AC,判斷出四邊形DCGM是正方形,再根據(jù)正方形的性質(zhì)求出面積與周長即可;
(3)過點M作ME⊥AC于E,作MF⊥BC于F,可得四邊形ECMF是正方形,根據(jù)正方形的性質(zhì)可得ME=MF,再根據(jù)同角的余角相等求出∠DME=∠GMF,然后利用“角邊角”證明△DME和△GMF全等,根據(jù)全等三角形面積相等可得△DME和△GMF的面積相等,然后求出陰影部分的面積等于正方形ECMF的面積,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出ME,然后求解即可.
解答:解:(1)∵AC=BC=4,
∴AB=
AC2+BC2
=
42+42
=4
2

∵M是AB的中點,
∴CM⊥AB,AM=CM=
1
2
AB=
1
2
×4
2
=2
2
,
∴陰影部分的面積=
1
2
AM•CM=
1
2
×2
2
×2
2
=4,
周長=AB+AM+CM=4+2
2
+2
2
=4+4
2
;

(2)設(shè)MN與AC的交點為D,BC與MK的交點為G,
∵旋轉(zhuǎn)角是45°,
∴∠AMD=45°,
又∵△ABC是等腰直角三角形,
∴∠B=45°,
∴∠AMD=∠B=45°,
∴DM∥BC,
∵M是AB的中點,
∴DM是△ABC的中位線,
∴DM=
1
2
BC=
1
2
×4=2,
同理可得,MG=
1
2
AC=
1
2
×4=2,
∴四邊形DCGM是正方形,
∴陰影部分的面積=22=4,
周長=2×4=8;

(3)如圖,過點M作ME⊥AC于E,作MF⊥BC于F,
∵M是等腰直角△ABC斜邊AB的中點,
∴四邊形ECMF是正方形,
∴ME=MF,
∵∠DME+∠EMG=∠NMK=90°,
∠GMF+∠EMG=∠EMF=90°,
∴∠DME=∠GMF,
在△DME和△GMF中,
∠DME=∠GMF
ME=MF
∠DEM=∠GFM=90°
,
∴△DME≌△GMF(ASA),
∴S△DME=S△GMF,
∴陰影部分的面積=正方形ECMF的面積,
∵M是AB的中點,
∴ME是△ABC的中位線,
∴ME=
1
2
BC=
1
2
×4=2,
∴正方形ECMF的面積=22=4,
∴陰影部分的面積=4.
故答案為:(1)4,4+4
2
;(2)4,8;(3)4.
點評:本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,以及正方形的判定與性質(zhì),(3)作輔助線構(gòu)造出全等三角形與正方形并求出陰影部分的面積等于正方形的面積是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一位同學(xué)拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=a.
精英家教網(wǎng)
(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為
 
,周長為
 
;
(2)將圖1中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖2,此時重疊部分的面積為
 
,周長為
 

(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一位同學(xué)拿了兩塊45°三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=4.
(1)如圖1,兩三角尺的重疊部分為△ACM,則重疊部分的面積為
 
,周長為
 

(2)將圖1中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖2,此時重疊部分的面積為
 
,周長為
 

(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1和圖2的圖形,如圖3,請你猜想此時重疊部分的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一位同學(xué)拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ACB的斜邊AB的中點處,設(shè)AC=BC=a.
精英家教網(wǎng)
(1)如圖①,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為
 
;
(2)如圖①中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖②,此時重疊部分的面積為
 
;
(3)如果將△MNK繞頂點M旋轉(zhuǎn)到不同于的位置圖①、圖②,如圖③,猜想此時重疊部分的面積為多少?并試著加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,一位同學(xué)拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動;將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=a.
猜想此時重疊部分四邊形CEMF的面積為
 
;
簡述證明主要思路.

查看答案和解析>>

同步練習(xí)冊答案