【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.
【答案】(1)證明見(jiàn)試題解析;(2)4.
【解析】試題分析:(1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;
(2)當(dāng)四邊形BFCE是菱形時(shí),BE=CE,根據(jù)菱形的性質(zhì)即可得到結(jié)果.
試題解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四邊形BFCE是平行四邊形;
(2)當(dāng)四邊形BFCE是菱形時(shí),BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,
∴當(dāng)BE="4" 時(shí),四邊形BFCE是菱形,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】猜謎語(yǔ)(打兩個(gè)數(shù)學(xué)名詞)從最后一個(gè)數(shù)起:________兩牛相斗:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn).
(1)求證:四邊形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】希望小學(xué)學(xué)生王晶和他的爸爸、媽媽準(zhǔn)備在“元旦”期間外出旅游.陽(yáng)光旅行社的收費(fèi)標(biāo)準(zhǔn)為:大人全價(jià),小孩半價(jià);而藍(lán)天旅行社不管大人小孩,一律八折.這兩家旅行社的基本費(fèi)一樣,都是300元,你認(rèn)為應(yīng)該去哪家旅行社較為合算?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于拋物線y=﹣(x+1)2+3,下列結(jié)論:其中正確結(jié)論的個(gè)數(shù)為( 。
①拋物線的開(kāi)口向下; ②對(duì)稱(chēng)軸為直線x=1; ③頂點(diǎn)坐標(biāo)為(﹣1,3);④x>1時(shí),y隨x的增大而減小
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x=0是關(guān)于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一個(gè)解,求實(shí)數(shù)m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在徒駭河觀景堤壩上有一段斜坡,為了方便游客通行,現(xiàn)準(zhǔn)備鋪上臺(tái)階,某施工隊(duì)測(cè)得斜坡上鉛錘的兩棵樹(shù)間水平距離AB=4米,斜坡距離BC=4.25米,斜坡總長(zhǎng)DE=85米.
(1)求坡角∠D的度數(shù)(結(jié)果精確到1°)
(2)若這段斜坡用厚度為15cm的長(zhǎng)方體臺(tái)階來(lái)鋪,需要鋪幾級(jí)臺(tái)階?(最后一個(gè)高不足15cm時(shí),按一個(gè)臺(tái)階計(jì)算)
(參考數(shù)據(jù):cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】眉山市三蘇雕像廣場(chǎng)是為了紀(jì)念三蘇父子而修建的.原是一塊長(zhǎng)為(4a+2b)米,寬為(3a﹣b)米的長(zhǎng)方形地塊,現(xiàn)在政府對(duì)廣場(chǎng)進(jìn)行改造,計(jì)劃將如圖四周陰影部分進(jìn)行綠化,中間將保留邊長(zhǎng)為(a+b)米的正方形三蘇父子雕像,則綠化的面積是多少平方米?并求出當(dāng)a=20,b=10時(shí)的綠化面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com