【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個(gè)RtBA1B1,以A1B1為直角邊作第三個(gè)RtA1B1A2,,依此規(guī)律,得到RtB2018A2019B2019,則點(diǎn)B2019的縱坐標(biāo)為________.

【答案】32020

【解析】

根據(jù)題意得出A1B1的坐標(biāo),進(jìn)而得出An,Bn坐標(biāo),進(jìn)而得出坐標(biāo)變化規(guī)律,進(jìn)而得出答案.

∵點(diǎn)A1)在射線OM上,∴點(diǎn)AA1、A2、A3……A2018各點(diǎn)在正比例函數(shù)yOM=x的圖象上


點(diǎn)B、B1、B2B3……B2018各點(diǎn)在正比例函數(shù)yON=x的圖象上,
依題意可知
B點(diǎn)的縱坐標(biāo)=A點(diǎn)橫坐標(biāo)的倍,
A1的縱坐標(biāo)=B點(diǎn)的縱坐標(biāo)=3,
A1的橫坐標(biāo)=B點(diǎn)的縱坐標(biāo)的=A點(diǎn)橫坐標(biāo)的3=×3
B1點(diǎn)的縱坐標(biāo)=A1點(diǎn)橫坐標(biāo)的=3×3,
An點(diǎn)橫坐標(biāo)=×3n,
Bn點(diǎn)的縱坐標(biāo)=3×3n
∴點(diǎn)B2019的縱坐標(biāo)為3×32019=32020
故答案為:32020

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(10),點(diǎn)A第一次跳動(dòng)至點(diǎn)A1(1,1),第二次向右跳動(dòng)3個(gè)單位至點(diǎn)A2(21),第三次跳動(dòng)至點(diǎn)A3(2,2),第四次向右跳動(dòng)5個(gè)單位至點(diǎn)A4(3,2),以此規(guī)律跳動(dòng)下去,點(diǎn)A2020次跳動(dòng)至點(diǎn)A2020的坐標(biāo)是( )

A.(1012,1011)B.(10091008)

C.(1010,1009)D.(1011,1010)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F30°,讓ABC在直角三角板的邊EF上向右平移(點(diǎn)C與點(diǎn)F重合時(shí)停止).

1)如圖1,當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),點(diǎn)A恰好落在直角三角板的斜邊DF上,證明:EF2BC

2)在ABC平移過程中,ABAC分別與三角板斜邊的交點(diǎn)為G、H,如圖2,線段EBAH是否始終成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACDABC的外角,CE平分∠ACB,交ABE,CF平分∠ACD,EF//BCAC、CFM、FEM=3,則CE2+CF2 的值為( )

A.36B.9C.6D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD,對(duì)角線ACBD交于點(diǎn)O,折疊正方形紙片ABCD使AD落在BD,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、AC于點(diǎn)E、G.連接GF.下列結(jié)論①∠AGD=112.5°②tan∠AED=2;SAGD=SOGD;四邊形AEFG是菱形;BE=2OG

其中正確結(jié)論的序號(hào)是(  )

A. ①②③④⑤ B. ①②③④ C. ①③④⑤ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A(2,4),B(41),C(-34)

(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】61日起,我國(guó)將全面試行居民階梯式電價(jià),某市出臺(tái)了實(shí)施細(xì)則,具體規(guī)定如下:

設(shè)用電量為a度,當(dāng)a≤150時(shí),電價(jià)為現(xiàn)行電價(jià),每度0.51元;當(dāng)150a≤240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.05元;當(dāng)a240時(shí),在現(xiàn)行電價(jià)基礎(chǔ)上,每度提高0.30元.設(shè)某戶的月用電量為x(度),電費(fèi)為y(元).則yx之間的函數(shù)關(guān)系的大致圖像是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=ADC=90°,連接ACBD,M、N分別是AC、BD的中點(diǎn),連接MN

(1)求證:MNBD.

(2)若∠DAC=62°,∠BAC=58°,求∠DMB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:

(模型呈現(xiàn))

(1)如圖1,,,過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn).,得.,可以推理得到.進(jìn)而得到_____,_____.我們把這個(gè)數(shù)學(xué)模型稱為模型或一線三等角模型;

(模型應(yīng)用)

(2)①如圖2,,,,連接,,且于點(diǎn)與直線交于點(diǎn).求證:點(diǎn)的中點(diǎn).

②如圖3,在平面直角坐標(biāo)系中,點(diǎn)為平面內(nèi)任一點(diǎn),點(diǎn)的坐標(biāo)為.是以為斜邊的等腰直角三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案