【題目】這次數(shù)學(xué)實(shí)踐課上,同學(xué)進(jìn)行大樹(shù)CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹(shù)頂端C的仰角為37°,然后沿在同一剖面的斜坡AB行走5 米至坡頂B處,然后再沿水平方向行走6米至大樹(shù)腳底點(diǎn)D處,斜面AB的坡度i=1:2(通常把坡面的垂直高度h和水平寬度l的比叫做坡度,即tanα值(α為斜坡與水平面夾角),那么大樹(shù)CD的高度約為(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )
A. 7米 B. 7.2米 C. 9.7米 D. 15.5米
【答案】A
【解析】
作BF⊥AE于F,則FE=BD=6米,DE=BF,設(shè)BF=x米,則AF=2x米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=10米,得出AE的長(zhǎng)度,在Rt△ACE中,由三角函數(shù)求出CE,計(jì)算即可.
作BF⊥AE于F,
則FE=BD=6米,DE=BF,
∵斜面AB的坡度i=1:2,
∴AF=2BF,
設(shè)BF=x米,則AF=2x米,
在Rt△ABF中,由勾股定理得:x2+(2x)2=(5)2,
解得:x=5,
∴DE=BF=5米,AF=10米,
∴AE=AF+FE=16米,
在Rt△ACE中,CE=AEtan37°≈16×0.75=12米,
∴CD=CE-DE=12米-5米=7米,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,且∠A=∠D.
(1)求∠ACD的度數(shù);
(2)若CD=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD,DEFG都是正方形,邊長(zhǎng)分別為m,n(m<n).坐標(biāo)原點(diǎn)O為AD的中點(diǎn),A,D,E在y軸上,若二次函數(shù)y=ax2的圖象過(guò)C,F兩點(diǎn),則=( )
A.+1B.+1C.2﹣1D.2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過(guò)點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017江蘇省連云港市)如圖,已知等邊三角形OAB與反比例函數(shù)(k>0,x>0)的圖象交于A、B兩點(diǎn),將△OAB沿直線OB翻折,得到△OCB,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C,線段CB交x軸于點(diǎn)D,則的值為____.(已知sin15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為的中,弦,所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,∠ACB=90°,CD是∠ACB的平分線,點(diǎn)P在CD上,CP=.將三角板的直角頂點(diǎn)放置在點(diǎn)P處,繞著點(diǎn)P旋轉(zhuǎn),三角板的一條直角邊與射線CB交于點(diǎn)E,另一條直角邊與直線CA、直線CB分別交于點(diǎn)F、點(diǎn)G.
(1)如圖,當(dāng)點(diǎn)F在射線CA上時(shí),
①求證:PF=PE.
②設(shè)CF=x,EG=y(tǒng),求y與x的函數(shù)解析式并寫(xiě)出函數(shù)的定義域.
(2)連接EF,當(dāng)△CEF與△EGP相似時(shí),求EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩堆背面完全相同的撲克,第一堆正面分別寫(xiě)有數(shù)字1、2、3、4,第二堆正面分別寫(xiě)有數(shù)字1、2、3.分別混合后,小玲從第一堆中隨機(jī)抽取一張,把卡片上的數(shù)字作為被減數(shù);小惠從第二堆中隨機(jī)抽取一張,把卡片上的數(shù)字作為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.
(1)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小玲與小惠作游戲,規(guī)則是:若這兩數(shù)的差為非負(fù)數(shù),則小玲勝;否則,小惠勝.你認(rèn)為該游戲規(guī)則公平嗎?如果公平,請(qǐng)說(shuō)明理由.如果不公平,請(qǐng)你修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com