【題目】10分)如圖,在RtABC中,ACB=90°,D為AB的中點,且AECD,CEAB.

(1)四邊形ADCE是菱形;

(2)若B=60°,BC=6,求菱形ADCE的高.(計算結(jié)果保留根號)

【答案】(1)證明見試題解析;(2)

【解析】

試題分析:(1)先證明四邊形ADCE是平行四邊形,再證明鄰邊相等,即可得出結(jié)論;

(2)過點D作DFCE,垂足為點F;可得出BCD是等邊三角形,得出BDC=BCD=60°,CD=BC=6,再由CEAB得出DCE=BDC=60°,在RtCDF中,由三角函數(shù)求出DF即可.

試題解析:(1)AECD,CEAB,四邊形ADCE是平行四邊形,又∵∠ACB=90°,D是AB的中點,CD=AB=BD=AD,平行四邊形ADCE是菱形;

(2)過點D作DFCE,垂足為點F,如圖所示:DF即為菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等邊三角形,∴∠BDC=BCD=60°,CD=BC=6,CEAB,∴∠DCE=BDC=60°,又CD=BC=6,在RtCDF中,DF=CDsin60°=6×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個數(shù)的立方是它本身,那么這個數(shù)是( )
A.0
B.0或1
C.-1或1
D.0或1或-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE, OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BO E=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形兩邊長分別為4和8,那么它的周長等于(

A.16 B.14或15 C.20 D.16或20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,是3x2y的同類項的是(

A. 2a2bB. 2x2yzC. x2yD. 3x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個直角三角形ABC的直角邊BC=a,AC=b,三角形內(nèi)部圓的半徑為r.
(1)用含a、b、r的式子表示陰影部分面積(結(jié)果保留π);
(2)當(dāng)a=10,b=6,r=2時,計算陰影部分的面積.(π取3.14,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x364x________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示A(-2,0),B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn)若每次翻轉(zhuǎn)60°,則經(jīng)過2017次翻轉(zhuǎn)之后,B的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MPOA,交AC于P,連接NP,已知動點運動了x秒.

(1)P點的坐標(biāo)為多少(用含x的代數(shù)式表示);

(2)試求NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;

(3)當(dāng)x為何值時,NPC是一個等腰三角形?簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案