【題目】為了實現(xiàn)“暢通市區(qū)”的目標(biāo),市地鐵一號線準(zhǔn)備動工,市政府現(xiàn)對地鐵一號線第標(biāo)段工程進行招標(biāo),施工距離全長為米.經(jīng)招標(biāo)協(xié)定,該工程由甲、乙兩公司承建,甲、乙兩公司施工方案及報價分別為:
甲公司施工單價(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為,
乙公司施工單價(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為.
(注:工程款施工單價施工長度)
如果不考慮其他因素,單獨由甲公司施工,那么完成此項工程需工程款多少萬元?
考慮到設(shè)備和技術(shù)等因素,甲公司必須邀請乙公司聯(lián)合施工,共同完成該工程.因設(shè)備共享,兩公司聯(lián)合施工時市政府可節(jié)省工程款萬元(從工程款中扣除).
①如果設(shè)甲公司施工米,那么乙公司施工________米,其施工單價________萬元/米,試求市政府共支付工程款(萬元)與(米)之間的函數(shù)關(guān)系式;
②如果市政府支付的工程款為萬元,那么應(yīng)將多長的施工距離安排給乙公司施工?
【答案】(300a),(0.05a+0.8). 應(yīng)將200米或100米長的施工距離安排給乙公司施工.
【解析】
(1)把x=300代入y1表達式中計算求值;
(2)市政府支付的工程款=甲公司所得工程款+乙公司所得工程款-節(jié)省工程款140,分別表示兩個公司所得工程款后便可得P的表達式;
(3)解P=2900時關(guān)于a的方程,求出a的值,計算300-a便得結(jié)論.
(1)由題意得:(27.80.09×300)×300=240(萬元).
答:甲公司單獨完成此項工程需工程款240萬元;
(2)①(300a),(0.05a+0.8).
由題意,得P=(27.80.09a)a+(0.05a+0.8)(300a)140=27.8a0.09a20.05a2+14.2a+100=0.14a2+42a+100,
②當(dāng)P=2900時,0.14a2+42a+100=2900,
整理,得:a2300a+20000=0,
解得:a1=100,a2=200,
則300a=200或300a=100.
答:應(yīng)將200米或100米長的施工距離安排給乙公司施工。
故答案為(300a),(0.05a+0.8).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線中,,,拋物線與軸有兩個不同的交點,且這兩個交點之間的距離小于,則下列結(jié)論:
①,②,③,④,其中結(jié)論正確的是( )
A. ①② B. ②③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i2)2=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.
計算:(1)i.i2.i3.i4
(2)i+i2+i3+i4+…+i2017+i2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,如圖是 3×3 的正方形網(wǎng)格,已知 A,B 是兩格點,C是不同于點A和B的格點,下列說法正確的是( ).
A.ΔABC是直角三角形,這樣的點C有4個
B.ΔABC是等腰三角形,這樣的點C有4個
C.ΔABC是等腰直角三角形,這樣的點C有6個
D.ΔABC是等腰直角三角形,這樣的點C有2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市“健益”超市購進一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)存在如下圖所示的一次函數(shù)關(guān)系.
試求出與的函數(shù)關(guān)系式;
設(shè)“健益”超市銷售該綠色食品每天獲得利潤為元,當(dāng)銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于元,請你幫助該超市確定綠色食品銷售單價的范圍(直接寫出).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,F是AD中點,延長BC到E,CE=BC,連結(jié)DE、CF,∠B=60°,AB=3,AD=4,則DE=_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b都是正整數(shù),且拋物線y=ax2+bx+l與x軸有兩個不同的交點A、B.若A、B到原點的距離都小于1,則a+b的最小值等于( 。
A. 16 B. 10 C. 4 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點M、F.
(1)求證:△DAC≌△EAB.
(2)求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com