【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,且EAF=45°,將ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,則下列判斷不正確的是(

A.AEE′是等腰直角三角形 B.AF垂直平分EE'

C.E′EC∽△AFD D.AE′F是等腰三角形

【答案】D.

【解析】

試題分析:因為ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,

AE′=AE,E′AE=90°,∴△AEE′是等腰直角三角形,故A正確;

ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,∴∠E′AD=BAE,

四邊形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+DAF=45°,

∴∠E′AD+FAD=45°,∴∠E′AF=EAF,AE′=AE,AF垂直平分EE',故B正確;

AFE′E,ADF=90°,∴∠FE′E+AFD=AFD+DAF,∴∠FE′E=DAF,

∴△E′EC∽△AFD,故C正確;ADE′F,但E′AD不一定等于DAE′,

∴△AE′F不一定是等腰三角形,故D錯誤;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCE,AFE是直線,

AB∥CD,∠1=∠2,∠3=∠4.

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵ ∠1 =∠2 (已知)

∴ ∠1+∠CAF =∠2+ ∠CAF ( )

即:∠ =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市公交快速通道開通后,為響應(yīng)市政府“綠色出行”的號召,家住新城的小王上班由自駕車改為乘坐公交車.已知小王家距上班地點18千米,他用乘公交車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點,乘公交車方式所用時間是自駕車方式所用時間的 .小王用自駕車方式上班平均每小時行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)-2-1、0、13的極差是(

A.5B.4C.-5D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件為必然事件的是(

A.打開電視,正在播放新聞B.買一張電影票,座位號是奇數(shù)號

C.拋一枚骰子,拋到的數(shù)是整數(shù)D.擲一枚質(zhì)地均勻的硬幣,正面朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列正多邊形材料中,不能單獨用來鋪滿地面的是( ).

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】往一個長25m,寬11m的長方體游泳池注水,水位每小時上升0.32m,
(1)寫出游泳池水深d(m)與注水時間x(h)的函數(shù)表達(dá)式;
(2)如果x(h)共注水y(m3),求yx的函數(shù)表達(dá)式;
(3)如果水深1.6m時即可開放使用,那么需往游泳池注水幾小時?注水多少(單位:m3)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩條邊長分別是 7 和 3,則第三條邊長是( )
A.8
B.7
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個暗箱里放有a個除顏色外完全相同的球,這a個球中紅球只有5個.每次將球攪勻后,任意摸出1個球記下顏色再放回暗箱.通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在20%附近,那么可以推算出a的值大約是_____

查看答案和解析>>

同步練習(xí)冊答案