【題目】如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( )
A.2:5
B.2:3
C.3:5
D.3:2
【答案】B
【解析】解:∵四邊形ABCD是平行四邊形, ∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S△DEF:S△ABF=4:25,
∴DE:AB=2:5,
∵AB=CD,
∴DE:EC=2:3.
故選B.
【考點精析】根據題目的已知條件,利用平行四邊形的性質和相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數a、b,定義一種運算“”為:ab=a2+ab﹣2,有下列命題: ①13=2;
②方程x1=0的根為:x1=﹣2,x2=1;
③不等式組 的解集為:﹣1<x<4;
④點( , )在函數y=x(﹣1)的圖象上.
其中正確的是( )
A.①②③④
B.①③
C.①②③
D.③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數;(2)OE是否平分∠BOC?說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2 , 兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實數根作為△ABC中AB、AC(AB<AC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的方程mx2-3(m+1)x+2m+3=0(m≠0).
(1)若方程有兩個相等的實數根,求m的值;
(2)求此方程的兩個根(若所求方程的根不是常數,就用含m的式子表示);
(3)若m為整數,當m取何值時方程的兩個根均為正整數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數為 ;
②若∠ACB=140°,求∠DCE的度數;
(2)由(1)猜想∠ACB與∠DCE的數量關系,并說明理由.
(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象的頂點C的坐標為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com