【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:①∵拋物線開(kāi)口向下,
∴a<0.
∵拋物線的對(duì)稱(chēng)軸為x=﹣ =1,
∴b=﹣2a>0.
當(dāng)x=0時(shí),y=c>0,
∴abc<0,①錯(cuò)誤;
②當(dāng)x=﹣1時(shí),y<0,
∴a﹣b+c<0,
∴b>a+c,②錯(cuò)誤;
③∵拋物線的對(duì)稱(chēng)軸為x=1,
∴當(dāng)x=2時(shí)與x=0時(shí),y值相等,
∵當(dāng)x=0時(shí),y=c>0,
∴4a+2b+c=c>0,③正確;
④∵拋物線與x軸有兩個(gè)不相同的交點(diǎn),
∴一元二次方程ax2+bx+c=0,
∴△=b2﹣4ac>0,④正確.
綜上可知:成立的結(jié)論有2個(gè).
故選B.
【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0).將矩形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)135°,得到矩形EFGH(點(diǎn)E與O重合).
(1)若GH交y軸于點(diǎn)M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個(gè)單位. ①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤4 ﹣2時(shí),S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B與∠C的平分線交于點(diǎn)O,過(guò)點(diǎn)O作DE∥BC,分別交AB、AC于點(diǎn)D、E.若AB=5,AC=4,則△ADE的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系xoy.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(4,4 ),請(qǐng)解答下列問(wèn)題:
(1)將△ABC向下平移5個(gè)單位長(zhǎng)度,畫(huà)出平移后的A1B1C1 , 并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱(chēng)的△A2B2C2;
(3)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A3B3C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,點(diǎn)F是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= 的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判斷正確的是 . (只填寫(xiě)正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案