【題目】如圖,已知BA=AE=DC,AD=EC,CE⊥AE,垂足為E.
(1)求證:△DCA≌△EAC;
(2)只需添加一個條件,即 ,可使四邊形ABCD為矩形.請加以證明.
科目:初中數學 來源: 題型:
【題目】綜合:
(1)在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,試探究圖1中線段BE、EF、FD之間的數量關系. 小亮同學認為:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,則可得到BE、EF、FD之間的數量關系.請你按照小亮的思路寫出推理過程.
(2)如圖2,已知正方形ABCD,△AEF是正方形ABCD的內接等邊三角形,請你找出S△ABE、S△ADF、S△CEF之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,∠ACD=3∠BCD,E是斜邊AB的中點,則下列結論不正確的是( )
A.AE=CE
B.CD=DE
C.∠DCA=60°
D.∠DEC=45°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】主題班會課上,王老師出示了如圖所示的一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟.根據同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據圖表中提供的信息,解答下列問題:
(1)參加本次討論的學生共有 人;
(2)表中 , ;
(3)將條形統(tǒng)計圖補充完整;
(4)現準備從四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點(合理競爭,合作雙贏)的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把一些圖書分給某班學生閱讀,如果每人分4本,則剩余23本;如果每人分5本,則還缺22本,這個班有學生( )
A. 45名B. 50名C. 55名D. 60名
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l過正方形ABCD的頂點A,BE⊥l于點E,DF⊥l于點F,若BE=2,DF=4,則EF的長為( )
A.2
B.2
C.6
D.8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com