【題目】人字折疊梯完全打開后如圖1所示,B,C是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=ACBD=140cm,∠BAC=40°,求點D離地面的高度DE.(結果精確到0.1cm;參考數(shù)據sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94

【答案】

【解析】

過點AAFBC于點F,根據等腰三角形的三線合一性質得∠BAF的度數(shù),進而得∠BDE的度數(shù),再解直角三角形得結果.

解:過點AAFBC于點F,則AFDE,

∴∠BDE=BAF,

AB=AC,∠BAC=40°,

∴∠BDE=BAF=20°,

DE=BD×cos20°≈140×0.94=131.6cm

故點D離地面的高度DE約為131.6cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=∠B30°,過點CCDAC,交AB于點D

1)作⊙O,使⊙O經過A、CD三點(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)判斷直線 BC與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線的頂點是A(1,3),將OA繞點O逆時針旋轉后得到OB,點B恰好在拋物線上,OB與拋物線的對稱軸交于點C

1)求拋物線的解析式;

2P是線段AC上一動點,且不與點A,C重合,過點P作平行于x軸的直線,與的邊分別交于M,N兩點,將以直線MN為對稱軸翻折,得到

設點P的縱坐標為m

①當內部時,求m的取值范圍;

②是否存在點P,使,若存在,求出滿足m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售A、B兩種新型小家電,A型每臺進價40元,售價50元,B型每臺進價32元,售價40元,4月份售出A40臺,且銷售這兩種小家電共獲利不少于800元.

1)求4月份售出B型小家電至少多少臺?

2)經市場調查,5月份A型售價每降低1元,銷量將增加10臺;B型售價每降低1元,銷量將在4月份最低銷量的基礎上增加15臺.為盡可能讓消費者獲得實惠,商場計劃5月份AB兩種小家電都降低相同價格,且希望銷售這兩種小家電共獲利965元,則這兩種小家電都應降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點(不與,重合),直線交過點的切線于點,過點的切線于點

(1)求證:;

(2),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國的數(shù)字支付正在引領未來世界的支付方式變革.某校數(shù)學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

1)這次活動共調查了   人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整.觀察此圖,將各種支付方式調查人數(shù)組成一組數(shù)據,求這組數(shù)據的“中位數(shù)”是“   ”;

3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求兩人選同種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組

請結合題意填空,完成本題的解答

(1)解不等式①,得___________;

(2)解不等式②,得___________;

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式組的解集為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了了解本校1200名學生的課外閱讀的情況,現(xiàn)從各年級隨機抽取了部分學生,對他們一周的課外閱讀時間進行了調整,井繪制出如下的統(tǒng)計圖①和圖②,根據相關信息,解答下列問題:

(Ⅰ)本次接受隨機抽樣調查的學生人數(shù)為______,圖①中的值為______;

(Ⅱ)求本次調查獲取的樣本數(shù)據的眾數(shù)、中位數(shù)和平均數(shù);

(Ⅲ)根據樣本數(shù)據,估計該校一周的課外閱讀時間大于的學生人數(shù).

查看答案和解析>>

同步練習冊答案