【題目】如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說(shuō)明.(適當(dāng)添加輔助線,其實(shí)并不難)

【答案】解:如圖:

(1)∠APC=∠PAB+∠PCD;
證明:過(guò)點(diǎn)P作PF∥AB,則AB∥CD∥PF,
∴∠APC=∠PAB+∠PCD(兩直線平行,內(nèi)錯(cuò)角相等).
(2)∠APC+∠PAB+∠PCD=360°;
(3)∠APC=∠PAB﹣∠PCD;
(4)∵AB∥CD,
∴∠POB=∠PCD,
∵∠POB是△AOP的外角,
∴∠APC+∠PAB=∠POB,
∴∠APC=∠POB﹣∠PAB,
∴∠APC=∠PCD﹣∠PAB.
【解析】關(guān)鍵過(guò)轉(zhuǎn)折點(diǎn)作出平行線,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,或結(jié)合三角形的外角性質(zhì)求證即可.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì),需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面上的機(jī)器人接受指令“[a , A]”(a≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向面對(duì)方向沿直線行走a.若機(jī)器人的位置在原點(diǎn),面對(duì)方向?yàn)閥軸的負(fù)半軸,則它完成一次指令[2,60°]后,所在位置的坐標(biāo)為(   )
A.(-1, )
B.(-1, )
C.( ,-1)
D.( ,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的一塊直角三角板放置在△ABC上,使三角板的兩條直角邊DE、EF分別經(jīng)過(guò)點(diǎn)B、C,若∠A=65°,則∠ABE+∠ACE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x40的解是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】火災(zāi)猛于虎!據(jù)應(yīng)急管理部統(tǒng)計(jì),2018年全國(guó)共接報(bào)火災(zāi)23.7萬(wàn)起,死亡1407人,傷798人,直接財(cái)產(chǎn)損失36.75億元,其中36.75億元用科學(xué)記數(shù)法表示正確的是( 。

A. 3.675×109B. 0.3675×1010

C. 3.675×108D. 36.75×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=2,點(diǎn)P0t)是y軸上的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).

2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)PAD的面積為S,求出St之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.

3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使PDA=90°時(shí),RtADPRtAOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2﹣2(m﹣3)x+16是一個(gè)完全平方式,則m的值是(
A.﹣7
B.1
C.﹣7或1
D.7或﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說(shuō)明.(適當(dāng)添加輔助線,其實(shí)并不難)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張長(zhǎng)方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D、C分別在M、N的位置上,若∠EFG=55°,求:
(1)∠FED的度數(shù);
(2)∠FEG的度數(shù);
(3)∠1和∠2的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案