【題目】計(jì)算:
(1)(π﹣3)0﹣()﹣2+(﹣1)2n
(2)(m2)n(mn)3÷mn﹣2
(3)x(x2﹣x﹣1)
(4)(﹣3a)2a4+(﹣2a2)3
【答案】(1)-7;(2)mn+5n3;(3)x3﹣x2﹣x;(4)a6.
【解析】
(1)根據(jù)零指數(shù)冪、負(fù)整數(shù)指數(shù)冪可以解答本題;
(2)根據(jù)冪的乘方、積的乘方和同底數(shù)冪的乘除法可以解答本題;
(3)根據(jù)單項(xiàng)式乘多項(xiàng)式可以解答本題;
(4)根據(jù)冪的乘方、積的乘方和同底數(shù)冪的乘法可以解答本題.
解:(1)(π﹣3)0﹣()﹣2+(﹣1)2n
=1-9+1
= -7;
(2)(m2)n(mn)3÷mn-2
=m2nm3n3÷mn-2
=mn+5n3;
(3)x(x2-x-1)
=x3-x2-x;
(4)(-3a)2a4+(-2a2)3
=9a2a4+(-8a6)
=9a6+(-8a6)
=a6.
故答案為:(1)-7;(2)mn+5n3;(3)x3﹣x2﹣x;(4)a6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),射線軸,直線交線段于點(diǎn),交軸于點(diǎn),是射線上一點(diǎn).若存在點(diǎn),使得恰為等腰直角三角形,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的路線移動(dòng)即:沿著長(zhǎng)方形移動(dòng)一周.
寫出點(diǎn)B的坐標(biāo)______
當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車共11輛,它們的載客量(不含司機(jī))、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時(shí)可搭載乘客350人.
A型客車 | B型客車 | |
載客量(人/輛) | 40 | 25 |
日租金(元/輛) | 320 | 200 |
車輛數(shù)(輛) | a | b |
(1)求a、b的值;
(2)某校七年級(jí)師生周日集體參加社會(huì)實(shí)踐,計(jì)劃租用A、B兩種型號(hào)的客車共6輛,且租車總費(fèi)用不超過1700元.
①最多能租用A型客車多少輛?
②若七年級(jí)師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) A(﹣2,0),B(2,0),C(0,2),點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△CD′E′,及旋轉(zhuǎn)角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當(dāng) AD′∥CE′時(shí),求α的大。
(2)如圖②,若 90°<α<180°,當(dāng)點(diǎn) D′落在線段 BE′上時(shí),求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則圖中陰影面積(△PEF和△PGH的面積和)等于( )
A. 7 B. 8 C. 12 D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=60°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點(diǎn)F,若∠ABD:∠ACF=2:3,則∠BEC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com