【題目】如圖,Rt△ABC中,直角邊AC=7cm,BC=3cm,CD為斜邊AB上的高,點E從點B出發(fā)沿直線BC以2cm/s的速度移動,過點E作BC的垂線交直線CD于點F.
(1)求證:∠A=∠BCD;
(2)點E運(yùn)動多長時間,CF=AB?并說明理由.

【答案】
(1)解:∵∠A+∠ACD=90°,∠BCD+∠ACD=90°,

∴∠A=∠BCD,


(2)解:如圖,

當(dāng)點E在射線BC上移動時,若E移動5s,則BE=2×5=10cm,

∴CE=BE﹣BC=10﹣3=7cm.

∴CE=AC,

在△CFE與△ABC中 ,

∴△CEF≌△ABC,

∴CF=AB,

當(dāng)點E在射線BC上移動時,若E移動2s,則BE′=2×2=4cm,

∴CE′=BE′+BC=4+3=7cm,

∴CE′=AC,

在△CF′E′與△ABC中 ,

∴△CF′E′≌△ABC,

∴CF′=AB,

總之,當(dāng)點E在射線BC上移動5s,或2s時,CF′=AB.


【解析】(1)根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)如圖,當(dāng)點E在射線BC上移動時,若E移動5s,則BE=2×5=10cm,根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交ABAC于點E、F.則下列四個結(jié)論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結(jié)論是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,AC5,∠DAB=∠DCB90°,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達(dá)點E,此時他仰望兩棵大樹的頂點AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.

(1)畫出四邊形 ABCD 關(guān)于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.

(2)求 A、B′、B、C 四點組成和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段ABCD的中點E,F之間距離是10cmAB,CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將四根長度相等的細(xì)木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動這個四邊形,使它形狀改變,當(dāng)∠C=90°時,測得AC=2 ,當(dāng)∠C=120°時,如圖2,AC=(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中, , , ,DAB邊的中點,EAC邊上一點,聯(lián)結(jié)DE,過點DBC邊于點F,聯(lián)結(jié)EF

(1)如圖1,當(dāng)時,求EF的長;

(2)如圖2,當(dāng)點EAC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;

(3)如圖3,聯(lián)結(jié)CDEF于點Q,當(dāng)是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

同步練習(xí)冊答案