【題目】若拋物線y=x2﹣4x+t(t為實(shí)數(shù))在0≤x≤3的范圍內(nèi)與x軸有公共點(diǎn),則t的取值范圍為 .
【答案】0≤t≤4
【解析】解:y=x2﹣4x+t=(x﹣2)2+t﹣4,
拋物線的頂點(diǎn)為(2,t﹣4),
當(dāng)拋物線與x軸的公共點(diǎn)為頂點(diǎn)時,t﹣4=0,解得t=4,
當(dāng)拋物線在0≤x≤3的范圍內(nèi)與x軸有公共點(diǎn),如圖,t﹣4≤0,解得t≤4,則x=0時,y≥0,即t≥0;x=3時,y≥0,即t﹣3≥0,解得t≥3,此時t的范圍為0≤t≤4,
綜上所述,t的范圍為0≤t≤4.
所以答案是0≤t≤4
【考點(diǎn)精析】通過靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時,圖像與x軸有兩個交點(diǎn);當(dāng)b2-4ac=0時,圖像與x軸有一個交點(diǎn);當(dāng)b2-4ac<0時,圖像與x軸沒有交點(diǎn).即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5與x軸交于點(diǎn)D,直線y=-x-與x軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)B,E關(guān)于x軸對稱,連接AB.
(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)S△AOC≠S,請通過計(jì)算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算正確的是( )
A. 2÷×=2÷1=2 B. -24+22÷20=-24+4÷20=-20÷20=-1
C. -2×(-)=-2×(-)=+= D. -12÷(6×3)=-2×3=-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過D分別向AB、AC引垂線,垂足分別為E、F點(diǎn).
(1)當(dāng)點(diǎn)D在BC的什么位置時,DE=DF?并證明.
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).
(3)過C點(diǎn)作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天下午運(yùn)營全是在東西走向的人民大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點(diǎn)是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項(xiàng)成績?nèi)缦拢▎挝唬悍郑?
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | |
學(xué)生甲 | 90 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計(jì)算甲、乙成績的中位數(shù);
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績按3:3:2:2計(jì)算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理、化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個化學(xué)實(shí)驗(yàn)(用紙簽D、E、F表示)中各抽取一個進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個.
(1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2)小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F(記作事件M)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k、b為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0)、B(0,3),拋物線y=﹣x2+2x+1與y軸交于點(diǎn)C.
(Ⅰ)求直線y=kx+b的函數(shù)解析式;
(Ⅱ)若點(diǎn)P(x,y)是拋物線y=﹣x2+2x+1上的任意一點(diǎn),設(shè)點(diǎn)P到直線AB的距離為d,求d關(guān)于x的函數(shù)解析式,并求d取最小值時點(diǎn)P的坐標(biāo);
(Ⅲ)若點(diǎn)E在拋物線y=﹣x2+2x+1的對稱軸上移動,點(diǎn)F在直線AB上移動,求CE+EF的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com