【題目】點(diǎn)N(x,y)的坐標(biāo)滿(mǎn)足xy<0,則點(diǎn)N在第______象限.
【答案】二、四
【解析】
根據(jù)有理數(shù)的乘法,可得橫坐標(biāo)與縱坐標(biāo)異號(hào),根據(jù)點(diǎn)的坐標(biāo)特征,可得答案.
解:由題意得橫坐標(biāo)與縱坐標(biāo)異號(hào),
∴點(diǎn)N在第二、四象限,
故答案為:二、四.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連結(jié),點(diǎn)在拋物線(xiàn)上,直線(xiàn)與軸交于點(diǎn).
(1)求的值及直線(xiàn)的函數(shù)表達(dá)式;
(2)點(diǎn)在軸正半軸上,點(diǎn)在軸正半軸上,連結(jié)與直線(xiàn)交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),若為的中點(diǎn).
①求證:;
②設(shè)點(diǎn)的橫坐標(biāo)為,求的長(zhǎng)(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,△ABC的頂點(diǎn)均在格點(diǎn)上,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得△A1B1C1 .
(1)在圖中畫(huà)出△A1B1C1;
(2)寫(xiě)出點(diǎn)A1的坐標(biāo);
(3)求出點(diǎn)C所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】能判定四邊形ABCD為平行四邊形的題設(shè)是( )。
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各點(diǎn)中,在x 軸上的是( ).
A. (3,-3)B. (0,3)C. (-3,0)D. (3,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,∠A=90°,DE∥BC,F(xiàn),G,H,I分別是DE,BE,BC,CD的中點(diǎn),連接FG,GH,HI,IF,F(xiàn)H,GI.對(duì)于下列結(jié)論:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四邊形FGHI是正方形.其中正確的是(請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)尋寶游戲的尋寶通道由正方形ABCD的邊組成,如圖1所示.為記錄尋寶者的行進(jìn)路線(xiàn),在A(yíng)B的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則尋寶者的行進(jìn)路線(xiàn)可能為( )
A.A→B
B.B→C
C.C→D
D.D→A
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com