【題目】2015年榕城區(qū)從中隨機調(diào)查了5所初中九年級學(xué)生的數(shù)學(xué)考試成績,學(xué)生的考試成績情況如表(數(shù)學(xué)考試滿分120分)
分數(shù)段 | 頻數(shù) | 頻率 |
72分以下 | 368 | 0.2 |
72﹣﹣﹣﹣80分 | 460 | 0.25 |
81﹣﹣﹣﹣95分 | ||
96﹣﹣﹣﹣108分 | 184 | 0.2 |
109﹣﹣﹣﹣119分 | ||
120分 | 54 |
(1)這5所初中九年級學(xué)生的總?cè)藬?shù)有多少人?
(2)統(tǒng)計時,老師漏填了表中空白處的數(shù)據(jù),請你幫老師填上;
(3)從這5所初中九年級學(xué)生中隨機抽取一人,恰好是108分以上(不包括108分)的概率是多少?
【答案】
(1)
解:這5所初中九年級學(xué)生的總?cè)藬?shù)=368÷0.2=1840人
(2)2015年榕城區(qū)從中隨機調(diào)查了5所初中九年級學(xué)生的數(shù)學(xué)考試成績,學(xué)生的考試成績情況如表(數(shù)學(xué)考試滿分120分)
分數(shù)段 | 頻數(shù) | 頻率 |
72分以下 | 368 | 0.2 |
72——80分 | 460 | 0.25 |
81——95分 | 644 | 0.35 |
96——108分 | 184 | 0.2 |
109——119分 | 130 | |
120分 | 54 |
(3)
解:隨機抽取一人,恰好是獲得108分以上的概率= =
【解析】(2)∵81——95分的頻率為1﹣(0.2+0.25+0.2)=0.35,
則81——95分的頻數(shù)為1840×0.35=644人,
∴109——119分的頻數(shù)為1840﹣(368+460+644+184+54)=130,
所以答案是:644,0.35,130;
【考點精析】解答此題的關(guān)鍵在于理解用頻率估計概率的相關(guān)知識,掌握在同樣條件下,做大量的重復(fù)試驗,利用一個隨機事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,∠ABO=30°,OB=3OC.
(1)試說明直線AC與直線AB垂直;
(2)若點D在直線AC上,且DB=DC,求點D的坐標(biāo);
(3)在(2)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點為(1,4)的拋物線y=ax2+bx+c與直線y= x+n交于點A(2,2),直線y= x+n與y軸交于點B與x軸交于點C
(1)求n的值及拋物線的解析式
(2)P為拋物線上的點,點P關(guān)于直線AB的對稱軸點在x軸上,求點P的坐標(biāo)
(3)點D為x軸上方拋物線上的一點,點E為軸上一點,以A、B、E、D為頂點的四邊為平行四邊形時,直接寫出點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.
(1)若△AMP的面積為y,寫出y與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動 秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當(dāng)其中一點到達終點時,另一點也停止運動.設(shè)點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當(dāng)t=1時,如圖1,
將沿△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標(biāo);
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.
問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應(yīng)的t值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O是一點,過點B作⊙O的切線,與AC延長線交于點D,連接BC,OE//BC交⊙O于點E,連接BE交AC于點H.
(1)求證:BE平分∠ABC;
(2)連接OD,若BH=BD=2,求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從3,﹣1, ,1,﹣3這5個數(shù)中,隨機抽取一個數(shù)記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之積是( )
A.
B.﹣2
C.﹣3
D.﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com