【題目】結(jié)合圖形填空:
已知,如圖,∠BAE+∠AED=180°,∠M=∠N,試說(shuō)明:∠1=∠2.
解:∵∠BAE+∠AED=180°
∴ AB∥CD( )
∴∠BAE= ( )
又∵∠M=∠N (已知)
∴ AN∥ ( )
∴∠NAE= (兩直線平行,內(nèi)錯(cuò)角相等)
∴∠BAE﹣∠NAE= ﹣
即∠1=∠2.( )
【答案】見(jiàn)解析
【解析】
根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行和內(nèi)錯(cuò)角相等兩直線平行可證得AB∥CD,AN∥ME,再根據(jù)平行線的性質(zhì),得∠BAE=∠AEC,∠NAE=∠MEA,結(jié)合圖形,根據(jù)角的和差,可得∠1=∠2.
解:∵∠BAE+∠AED=180°
∴AB∥CD(同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠BAE=∠AEC(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠M=∠N (已知)
∴AN∥ME(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠NAE=∠MEA(兩直線平行,內(nèi)錯(cuò)角相等)
∴∠BAE-∠NAE=∠AEC-∠MEA
即∠1=∠2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,過(guò)點(diǎn)畫(huà)軸的垂線,點(diǎn)在線段上,連結(jié)并延長(zhǎng)交直線于點(diǎn),過(guò)點(diǎn)畫(huà)交直線于點(diǎn).
(1)求的度數(shù),并直接寫(xiě)出直線的解析式;
(2)若點(diǎn)的橫坐標(biāo)為2,求的長(zhǎng);
(3)當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P在直線DM上,且使△OMP的面積等于2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動(dòng)中,八年級(jí)數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了如下的課外實(shí)踐活動(dòng).具體內(nèi)容如下:在一段筆直的公路上選取兩點(diǎn)A、B,在公路另一側(cè)的開(kāi)闊地帶選取一觀測(cè)點(diǎn)C,在C處測(cè)得點(diǎn)A位于C點(diǎn)的南偏西45°方向,且距離為100米,又測(cè)得點(diǎn)B位于C點(diǎn)的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時(shí),興趣小組在觀察中測(cè)得一輛小轎車(chē)經(jīng)過(guò)該路段用時(shí)13秒,請(qǐng)你幫助他們算一算,這輛小車(chē)是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計(jì)算結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,DE=CE,連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和父母打算去某火鍋店吃火鍋,該店在網(wǎng)上出售“元抵元的全場(chǎng)通用代金券”(即面值元的代金券實(shí)付元就能獲得),店家規(guī)定代金券等同現(xiàn)金使用,一次消費(fèi)最多可用張代金券,而且使用代金券的金額不能超過(guò)應(yīng)付總金額.
(1)如果小明一家應(yīng)付總金額為元,那么用代金券方式買(mǎi)單,他們最多可以優(yōu)惠多少元:
(2)小明一家來(lái)到火鍋店后,發(fā)現(xiàn)店家現(xiàn)場(chǎng)還有一個(gè)優(yōu)惠方式: 除鍋底不打折外,其余菜品全部折.小明一家點(diǎn)了一份元的鍋底和其他菜品,用餐完畢后,聰明的小明對(duì)比兩種優(yōu)惠,選擇了現(xiàn)場(chǎng)優(yōu)惠方式買(mǎi)單,這樣比用代金券方式買(mǎi)單還能少付元.問(wèn)小明一家實(shí)際付了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:如圖,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點(diǎn)之間的距離可以表示為|a﹣b|.根據(jù)閱讀材料與你的理解回答下列問(wèn)題:
(1)數(shù)軸上表示3與﹣4兩點(diǎn)之間的距離是 .
(2)數(shù)軸上有理數(shù)x與有理數(shù)8所對(duì)應(yīng)兩點(diǎn)之間的距離用絕對(duì)值符號(hào)可以表示為 .
(3)代數(shù)式|x+6|可以表示數(shù)軸上有理數(shù)x與有理數(shù) 所對(duì)應(yīng)的兩點(diǎn)之間的距離;若|x+6|=5,則x= .
(4)求代數(shù)式|x+1010|+|x+504|+|x﹣1009|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OB=1,以OB為直角邊作等腰直角三角形A1BO,再以OA1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的長(zhǎng)度為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com