如圖,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的點(diǎn)E重合,展開(kāi)后,折痕AD交BO于點(diǎn)F,連接DE、EF.下列結(jié)論:
①四邊形BDEF是菱形;②四邊形DFOE的面積=三角形AOF的面積
其中正確的結(jié)論(  )
分析:首先根據(jù)折疊的性質(zhì)得到BF=EF,BD=ED,再結(jié)合等腰直角三角形的性質(zhì)、三角形的內(nèi)角和及外角的性質(zhì)得出∠BFD=∠BDF,由等邊對(duì)等角得出BD=BF,然后根據(jù)四邊相等的四邊形是菱形可判斷①正確;連接CF,先根據(jù)等底同高的兩個(gè)三角形面積相等得出S△AOF=S△COF,再由同底等高的兩個(gè)三角形面積相等得出S△EFD=S△EFC,從而得到S四邊形DFOE=S△COF,進(jìn)而可判斷②正確.
解答:解:①∵把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的點(diǎn)E重合,展開(kāi)后,折痕AD交BO于點(diǎn)F,
∴BF=EF,BD=ED.
∵OB⊥AC,且AB=CB,
∴BO為∠ABC的平分線,即∠ABO=∠OBC=45°,
由折疊可知,AD是∠BAC的平分線,即∠BAF=22.5°,
又∵∠BFD為△ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
∴∠BDF=180°-45°-67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,
∴BF=EF=BD=ED,
∴四邊形BDEF是菱形,故①正確;
②連接CF.
∵△AOF和△COF等底同高,
∴S△AOF=S△COF,
∵四邊形BDEF是菱形,
∴EF∥CD,
∴S△EFD=S△EFC
∴S四邊形DFOE=S△COF,
∴S四邊形DFOE=S△AOF,故②正確.
故選C.
點(diǎn)評(píng):本題主要考查了翻折變換,菱形的判定,等腰直角三角形的性質(zhì),平行線的判定,面積的計(jì)算等知識(shí),綜合性較強(qiáng),難度中等.用到的知識(shí)點(diǎn)為:折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;四邊相等的四邊形是菱形;三角形的中線把三角形分成面積相等的兩部分;兩條平行線間的距離相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案