【題目】如圖所示,AC⊥AB,AB=2 ,AC=2,點D是以AB為直徑的半圓O上一動點,DE⊥CD交直線AB于點E,設(shè)∠DAB=α(0°<α<90°).
(1)當(dāng)α=18°時,求 的長;
(2)當(dāng)α=30°時,求線段BE的長;
(3)若要使點E在線段BA的延長線上,則α的取值范圍是(直接寫出答案)

【答案】
(1)解:連接OD,

∵α=18°,

∴∠DOB=2α=36°,

∵AB=2 ,

∴⊙O的半徑為: ,

的長為: = π


(2)解:∵AB是⊙O的直徑,

∴∠ADB=90°,

∵α=30°,

∴∠B=60°,

∵AC⊥AB,DE⊥CD,

∴∠CAB=∠CDE=90°,

∴∠CAD=90°﹣α=60°,

∴∠CAD=∠B,

∵∠CDA+∠ADE=∠ADE+∠BDE=90°,

∴∠CDA=∠BDE,

∴△ACD∽△BED,

,

∵AB=2 ,α=30°,

∴BD= AB= ,

∴AD= =3,

,

∴BE= ;

經(jīng)檢驗,BE= 是原分式方程的解


(3)60°<α<90°
【解析】解:(3)如圖,當(dāng)E與A重合時, ∵AB是直徑,AD⊥CD,
∴∠ADB=∠ADC=90°,
∴C,D,B共線,
∵AC⊥AB,
∴在Rt△ABC中,AB=2 ,AC=2,
∴tan∠ABC= =
∴∠ABC=30°,
∴α=∠DAB=90°﹣∠ABC=60°,
當(dāng)E′在BA的延長線上時,如圖,可得∠D′AB>∠DAB>60°,
∵0°<α<90°,
∴α的取值范圍是:60°<α<90°.
所以答案是:60°<α<90°.


【考點精析】認(rèn)真審題,首先需要了解圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半),還要掌握弧長計算公式(若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B( ,y2),C(﹣m,y3)是該拋物線上不同的三點,現(xiàn)將拋物線的對稱軸繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°得到直線a,過拋物線頂點P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點坐標(biāo);
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點,求k的值;
(3)當(dāng)1<PH≤6時,試比較y1 , y2 , y3之間的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)解方程:
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:|﹣ |﹣20120﹣sin30°;
(2)化簡:(a﹣b)2+b(2a+b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△DEC的面積相等,點E在BC邊上,DE∥AB交AC于點F,AB=12,EF=9,則DF的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”

(1)概念理解:
請你根據(jù)上述定義舉一個等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一矩形紙片ABCD折疊,使兩個頂點A,C重合,折痕為FG.若AB=4,BC=8,則△ABF的面積為

查看答案和解析>>

同步練習(xí)冊答案