【題目】如圖所示的是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,若水面下降2m,則水面寬度增加( )
A. B. C. D.
【答案】C
【解析】
根據(jù)已知建立平面直角坐標(biāo)系,進而求出二次函數(shù)解析式,再通過把y=-2代入拋物線解析式得出水面寬度,即可得出答案.
解:以AB所在的直線為x軸,向右為正方向,線段AB的垂直平分線為y軸,向上為正方向,建立如圖所示的平面直角坐標(biāo)系,
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標(biāo)為(0,2),設(shè)頂點式y=ax2+2,代入A點坐標(biāo)(-2,0),
得出:a=-0.5,所以拋物線解析式為y=-0.5x2+2,
把y=-2代入拋物線解析式得出:-2=-0.5x2+2,
解得:x=±2,
所以水面寬度增加到4米,比原先的寬度當(dāng)然是增加了(4-4)米,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與直線y=x相交于點B,點B的橫坐標(biāo)為3,點A(0,6).
(1)求直線AB的解析式;
(2)動點P從原點O出發(fā),以每秒個單位長度的速度沿x軸正方向運動,過點P作直線y=x的垂線,垂足為C,連接AP,AP的中點為D,連接CD,設(shè)CD=d,點P運動的時間為t秒,求d與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)tan∠APC=時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于A(1,0),B(-4,0)兩點,與y軸交于點C,且AB=BC,求此拋物線對應(yīng)的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:
①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣.
其中正確結(jié)論的個數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標(biāo)是(6,-1),D(n,3).
(1)求m的值和點D的坐標(biāo).
(2)求的值.
(3)根據(jù)圖象直接寫出:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC,CA,AB分別相切于點D,E,F,且AB=9 cm,BC=14 cm,CA=13 cm,則AF的長為 __________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,這時,海輪所在的B處距離燈塔P有多遠?(結(jié)果用非特殊角的三角函數(shù)及根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時,點P的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com