【題目】如圖,菱形ABCD中,E是AD的中點,將△CDE沿CE折疊后,點A和點D恰好重合,若菱形ABCD的面積為4 ,則菱形ABCD的周長是(
A.8
B.16
C.8
D.16

【答案】A
【解析】解:∵四邊形ABCD是菱形, ∴AD=CD,
又∵CD=AC,
∴AD=CD=AC,
即△ADC是等邊三角形,
∴∠D=60°,
∴CE=CDsin60°= CD,
∵菱形ABCDABCD的面積=ADCE= CD2=4
∴CD=2 ,
∴菱形ABCD的周長為2 ×4=8 ;
故選:A.
【考點精析】關(guān)于本題考查的菱形的性質(zhì)和翻折變換(折疊問題),需要了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有三張分別標有數(shù)字1、2、6的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回),再從中任意抽取一張,將上面的數(shù)字記為b,這樣的數(shù)字a,b能使關(guān)于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有兩個正根的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標分別是A(3,2)、B(1,3).將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1
(1)畫出旋轉(zhuǎn)后的△A1OB1 , 點A1的坐標為;
(2)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為 ,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:二次函數(shù)y=ax2+bx+c的圖像所示,下列結(jié)論中:①abc>0;②2a+b=0;③當m≠1時,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某電信部門計劃修建一條連接B、C兩地的電纜.測量人員在山腳A點測得B、C兩地的仰角分別為30°、45°,在B地測得C地的仰角為60°.已知C地比A地高200m,電纜BC至少長多少米(精確到1m)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.
(1)請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖像記作拋物線E,現(xiàn)有點A(2,0)和拋物線E上的點B(﹣1,n),請完成下列任務;
(1)【嘗試】①當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為
(2)②判斷點A是否在拋物線E上;
(3)③求n的值.
(4)【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,坐標為
(5)【應用】
①二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+3和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由;
②以AB為邊作矩形ABCD,使得其中一個頂點落在y軸上;若拋物線E經(jīng)過A,B,C,D其中的三點,求出所有符合條件的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有6000名初三學生,那么在試卷評講課中,“獨立思考”的初三學生約有多少人?

查看答案和解析>>

同步練習冊答案