拋物線y=ax2+bx+c(a<0)如圖所示,則關(guān)于x的不等式ax2+bx+c>0的解集是
A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1
C

試題分析:根據(jù)函數(shù)圖象,寫(xiě)出x軸上方部分的x的取值范圍即可:
∵拋物線y=ax2+bx+c與x軸的交點(diǎn)坐標(biāo)為(﹣3,0)(1,0),
∴關(guān)于x的不等式ax2+bx+c>0的解集是﹣3<x<1。
故選C!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M、N分別以每秒1個(gè)單位的速度從點(diǎn)A、D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M、N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求菱形ABCD的周長(zhǎng);
(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;
(3)當(dāng)t=30秒時(shí),在線段OD的垂直平分線上是否存在點(diǎn)P,使得∠DPO=∠DON?若存在,這樣的點(diǎn)P有幾個(gè)?并求出點(diǎn)P到線段OD的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.

(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;
②試說(shuō)明無(wú)論k取何值,的值都等于同一個(gè)常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=x與拋物線交于A、B兩點(diǎn).

(1)求交點(diǎn)A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個(gè)點(diǎn),使得每個(gè)點(diǎn)與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個(gè)滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線經(jīng)過(guò)點(diǎn)A、B、C.

(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(6,0),B(3,),C(1,),動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→ C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)以O(shè)、P、Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請(qǐng)求出t的值,若不能,請(qǐng)說(shuō)明理由;
(4)經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的對(duì)稱軸、直線OB和PQ能夠交于一點(diǎn)嗎?若能,請(qǐng)求出此時(shí)t的值(或范圍),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點(diǎn)坐標(biāo)為.由勾股定理得,所以A、B兩點(diǎn)間的距離公式為
注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問(wèn)題:

如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過(guò)P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(x1,0)、(2,0),且﹣2<x1<﹣1,與y軸正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
則其中正確結(jié)論的序號(hào)是
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…An在y軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案