【題目】如圖,已知ABC的周長是21,OB,OC分別平分∠ABC和∠ACBODBCD,且OD=3ABC的面積是__

【答案】31.5

【解析】試題分析:連接OA,作OEAC,OFAB,垂足分別為E、F,將ABC的面積分為:SABC=SOBC+SOAC+SOAB,而三個小三角形的高OD=OE=OF,它們的底邊和就是ABC的周長,可計算ABC的面積.

解:作OEAC,OFAB,垂足分別為E、F,連接OA,

OB,OC分別平分∠ABC和∠ACBODBC,

OD=OE=OF,

SABC=SOBC+SOAC+SOAB

=×OD×BC+×OE×AC+×OF×AB

=×OD×BC+AC+AB

=×3×21=31.5

故填31.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:﹣x3y+2x2y﹣xy=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P的坐標(biāo)為(﹣2,a2+1),則點P所在的象限是(  )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】逆定理的定義:一般地,如果一個定理的逆命題經(jīng)過證明是正確的,那么它也是一個定理,稱這兩個定理互為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a0)經(jīng)過A(﹣1,0)、B3,0)、C0,﹣3)三點,直線l是拋物線的對稱軸

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);

3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線m0)與x軸的交點為AB

1)求拋物線的頂點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點

當(dāng)m1時,求線段AB上整點的個數(shù);

若拋物線在點AB之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,結(jié)合函數(shù)的圖象,求m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x為何值時,兩個代數(shù)式x2+1,4x+1的值相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一時刻,身高1.6m的小明在陽光下的影長是0.4m,同一時刻同一地點測得旗桿的影長是5m,則該旗桿的高度是_________m.

查看答案和解析>>

同步練習(xí)冊答案