【題目】有這樣一個(gè)問(wèn)題:探究同一平面直角坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質(zhì).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= x與y= ,當(dāng)k>0時(shí)的圖象性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程:
(1)如圖所示,設(shè)函數(shù)y= x與y= 圖象的交點(diǎn)為A,B,已知A點(diǎn)的坐標(biāo)為(﹣k,﹣1),則B點(diǎn)的坐標(biāo)為;
(2)若點(diǎn)P為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).
①設(shè)直線PA交x軸于點(diǎn)M,直線PB交x軸于點(diǎn)N.求證:PM=PN.
證明過(guò)程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得
∴直線PA的解析式為
請(qǐng)你把上面的解答過(guò)程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點(diǎn)坐標(biāo)為(1,k)(k≠1)時(shí),判斷△PAB的形狀,并用k表示出△PAB的面積.
【答案】
(1)(k,1)
(2)
②解:由①可知,在△PMN中,PM=PN,
∴△PMN為等腰三角形,且MH=HN=k.
當(dāng)P點(diǎn)坐標(biāo)為(1,k)時(shí),PH=k,
∴MH=HN=PH,
∴∠PMH=∠MPH=45°,∠PNH=∠NPH=45°,
∴∠MPN=90°,即∠APB=90°,
∴△PAB為直角三角形.
當(dāng)k>1時(shí),如圖1,
S△PAB=S△PMN﹣S△OBN+S△OAM,
= MNPH﹣ ONyB+ OM|yA|,
= ×2k×k﹣ (k+1)×1+ (k﹣1)×1,
=k2﹣1;
當(dāng)0<k<1時(shí),如圖2,
S△PAB=S△OBN﹣S△PMN+S△OAM,
= ONyB﹣k2+ OM|yA|,
= (k+1)×1﹣k2+ (1﹣k)×1,
=1﹣k2
【解析】解:(1)由正、反比例函數(shù)圖象的對(duì)稱性可知,點(diǎn)A、B關(guān)于原點(diǎn)O對(duì)稱,
∵A點(diǎn)的坐標(biāo)為(﹣k,﹣1),
∴B點(diǎn)的坐標(biāo)為(k,1).
所以答案是:(k,1).
2)①證明過(guò)程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得: ,
∴直線PA的解析式為y= x+ ﹣1.
當(dāng)y=0時(shí),x=m﹣k,
∴M點(diǎn)的坐標(biāo)為(m﹣k,0).
過(guò)點(diǎn)P作PH⊥x軸于H,如圖1所示,
∵P點(diǎn)坐標(biāo)為(m, ),
∴H點(diǎn)的坐標(biāo)為(m,0),
∴MH=xH﹣xM=m﹣(m﹣k)=k.
同理可得:HN=k.
∴MH=HN,
∴PM=PN.
所以答案是: ;y= x+ ﹣1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖的相關(guān)知識(shí),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn),以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:通過(guò)小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,而假分?jǐn)?shù)都可化為常分?jǐn)?shù),如: = =2+ =2 .我們定義:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.如 , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;
解決下列問(wèn)題:
(1)分式 是 分式(填“真分式”或“假分式”);
(2) 將假分式化為帶分式;
(3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了順利通過(guò)“國(guó)家文明城市”驗(yàn)收,市政府?dāng)M對(duì)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,需在40天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若甲工程隊(duì)每天的費(fèi)用是4.5萬(wàn)元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬(wàn)元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完成工程,又能使工程費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)終端設(shè)備的升級(jí)換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A.和同學(xué)親友聊天;B.學(xué)習(xí);C.購(gòu)物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):
選項(xiàng) | 頻數(shù) | 頻率 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
根據(jù)以上信息解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中m,n,p的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購(gòu)物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連結(jié)CH、CG.
(1)求證:CG平分∠DCB;
(2)在正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過(guò)程中,求線段HG、OH、BG之間的數(shù)量關(guān)系;
(3)連結(jié)BD、DA、AE、EB,在旋轉(zhuǎn)的過(guò)程中,四邊形AEBD是否能在點(diǎn)G滿足一定的條件下成為矩形?若能,試求出直線DE的解析式;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動(dòng)AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一種拉桿式旅行箱的示意圖,箱體長(zhǎng)AB=50cm,拉桿最大伸長(zhǎng)距離BC=30cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,其直徑為10cm,⊙A與水平地面切于點(diǎn)D,過(guò)A作AE∥DM.當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺(jué)較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)C距離水平地面(40 +5)cm,求此時(shí)拉桿箱與水平面AE所成角∠CAE的大小及點(diǎn)B到水平地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過(guò)50噸時(shí),每噸的成本y(萬(wàn)元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)生產(chǎn)這種產(chǎn)品每噸的成本為7萬(wàn)元時(shí),求該產(chǎn)品的生產(chǎn)數(shù)量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com