【題目】如圖,在△ABC中,∠ACB=2∠A,過點C的直線能將△ABC分成兩個等腰三角形,則∠A的度數(shù)為____.
【答案】45°或36°或()°.
【解析】
根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得到結(jié)論.
∵過點C的直線能將△ABC分成兩個等腰三角形,
①如圖1.
∵∠ACB=2∠A,∴AD=DC=BD,
∴∠ACB=90°,
∴∠A=45°;
②如圖2,AD=DC=BC,
∴∠A=∠ACD,∠BDC=∠B,
∴∠BDC=2∠A,
∴∠A=36°,
③AD=DC,BD=BC,
∴∠BDC=∠BCD,∠A=∠ACD,
∴∠BCD=∠BDC=2∠A,
∴∠BCD=2∠A.
∵∠ACB=2∠A,故這種情況不存在.
④如圖3,AD=AC,BD=CD,
∴∠ADC=∠ACD,∠B=∠BCD,
設(shè)∠B=∠BCD=α,
∴∠ADC=∠ACD=2α,
∴∠ACB=3α,
∴∠A=α.
∵∠A+∠B+∠ACB=180°,
∴ α+α+3α=180°,
∴α= ,
∴∠A=,
綜上所述:∠A的度數(shù)為45°或36°或()°.
故答案為:45°或36°或()°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖(1)所示,在△ABC中,BD平分∠ABC , CD平分∠ACB,過D點作EF∥BC,與AB交于點E,與AC交于點F
(1)若BE=3,CF=2,求EF的長;
(2)如圖(2)所示,若∠ABC的平分線BD與△ABC的外角∠ACG的平分線CD相交于點D,其它條件不變,請寫出EF,BE,CF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿y軸翻折,再向下平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點C的坐標為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長25米的梯子,斜靠在豎直的墻上,這時梯子底端離墻7米.
(1)此時梯子頂端離地面多少米?
(2)若梯子頂端下滑4米,那么梯子底端將向左滑動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.
(1)求拋物線的解析式;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在山腳的處測得山頂的仰角為,沿著坡度為的斜坡前進米到處(即,米),測得的仰角為,求此山的高度.(答案保留根號)
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小剛玩擲骰子游戲,按所得的數(shù)字是幾,棋子就向前走幾格,每人可連續(xù)投擲兩次,棋子最終落到哪一格,就可獲得相應(yīng)格子中的獎品.現(xiàn)在輪到小明擲骰子,棋子處于如圖所示的地方.
求:(1)小明擲一次骰子能得到獎品嗎?
(2)小明下一次投擲有沒有可能獲得獎品?若能獲獎,概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( )
A. 24m B. 25m C. 28m D. 30m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com