【題目】如圖,Rt△ABC中,∠B=90°,點D在邊AC上,且DE⊥AC交BC于點E.
(1)求證:△CDE∽△CBA;
(2)若AB=3,AC=5,E是BC中點,求DE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水城門位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢蝶島區(qū)域重要的標志性景觀.在課外實踐活動中,某校九年級數(shù)學(xué)興趣小組決定測量該水城門的高.他們的操作方法如下:如圖,先在D處測得點A的仰角為20°,再往水城門的方向前進13米至C處,測得點A的仰角為31°(點D、C、B在一直線上),求該水城門AB的高.(精確到0.1米)
(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=6cm,E是線段AB上一動點,D是BC的中點,過點C作射線CG,使CG∥AB,連接ED,并延長ED交CG于點F,連接AF.設(shè)A,E兩點間的距離為xcm,A,F兩點間的距離為y1cm,E,F兩點間的距離為y2cm.小麗根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.下面是小麗的探究過程,請補充完整:
(1)按照表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 9.49 | 8.54 | 7.62 | 6.71 | 5.83 | 5.00 | 4.24 |
y2/cm | 9.49 | 7.62 | 5.83 | 3.16 | 3.16 | 4.24 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當△AEF為等腰三角形時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(m為實數(shù))有兩個實數(shù)根.(提示:若、是一元二次方程兩根,則有,)
(1)當m為何值時,?
(2)若,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一種商品,單價30元,試銷中發(fā)現(xiàn)這種商品每天的銷售量夕(件)與每件的銷售價(元)滿足關(guān)系:=100-2.若商店每天銷售這種商品要獲得200元的銷售利潤,那么每件商品的售價應(yīng)定為多少元?每天要售出這種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC于點D,連接BD.
(1)求證:∠A=∠CBD.
(2)若AB=10,AD=6,M為線段BC上一點,請寫出一個BM的值,使得直線DM與⊙O相切,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,D是AB的中點,E,F分別是AC,BC.上的點(點E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DF,GE,GF
(1)求證:四邊形EDFG是正方形;
(2)直接寫出當點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內(nèi)的一個交點,PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點P的坐標;
(3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),作QD⊥x軸于D,當△BQD與△AOC相似時,求點Q的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com