【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.

【答案】2m

【解析】

試題分析:首先得出AOE≌△OBF(AAS),進而得出CD的長,進而求出OM,MN的長即可.

解:作AEOM,BFOM,

∵∠AOE+BOF=BOF+OBF=90°

∴∠AOE=OBF

AOEOBF中,

,

∴△AOE≌△OBF(AAS),

OE=BF,AE=OF

即OE+OF=AE+BF=CD=17(m)

EF=EM﹣FM=AC﹣BD=10﹣3=7(m),

2EO+EF=17,

則2×EO=10,

所以O(shè)E=5m,OF=12m,

所以O(shè)M=OF+FM=15m

又因為由勾股定理得ON=OA=13,

所以MN=15﹣13=2(m).

答:旗桿的高度OM為15米,瑪麗在蕩繩索過程中離地面的最低點的高度MN為2米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)m是不小于﹣1的實數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數(shù)根x1、x2,

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,,線段上有動點,過作直線邊于點,并使得

重合時,求的長;

在直線上是否存在一點,使得是等腰直角三角形?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=5,AC=13,BC邊上的中線AD=6,則ABD的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角中,,若想找一點P,使得互補,甲、乙、丙三人作法分別如下:

甲:以B為圓心,AB長為半徑畫弧交ACP點,則P即為所求;

乙:分別以BC為圓心,AB,AC長為半徑畫弧交于P點,則P即為所求;

丙:作BC的垂直平分線和的平分線,兩線交于P點,則P即為所求.

對于甲、乙、丙三人的作法,下列敘述正確的是  

A. 三人皆正確B. 甲、丙正確,乙錯誤

C. 甲正確,乙、丙錯誤D. 甲錯誤,乙、丙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,垂足為,,,的中點.現(xiàn)有下列四個結(jié)論:①;②四邊形的面積等于;;.其中正確結(jié)論的個數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形的邊長為厘米,對角線上的兩個動點,.點從點,點從點同時出發(fā),沿對角線以厘米/秒的相同速度運動,過的直角邊于,過的直角邊于,連接,.設(shè)、、圍成的圖形面積為,圍成的圖形面積為這里規(guī)定:線段的面積為到達到達停止.若的運動時間為秒,解答下列問題:

如圖,判斷四邊形是什么四邊形,并證明;

時,求為何值時,;

的和,試用的代數(shù)式表示.(如圖為備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有2個信封,每個信封內(nèi)各裝有四張卡片,其中一個信封內(nèi)的四張卡片上分別寫有1、2、3、4四個數(shù),另一個信封內(nèi)的四張卡片分別寫有5、6、7、8四個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于20,則甲獲勝,否則乙獲勝.

(1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率

(2)你認為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,B=30°,邊AB的垂直平分線DEAB于點E,交BC于點D.CD=3,則BC的長為(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

同步練習冊答案