【題目】如圖所示,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F,G分別在線段BC,AC上,拋物線P上的部分點(diǎn)的橫坐標(biāo)對應(yīng)的縱坐標(biāo)如下.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S最大時,連接DF并延長至點(diǎn)M,使FM=k·DF,若點(diǎn)M不在拋物線P上,求k的取值范圍;
(4)若點(diǎn)D的坐標(biāo)為(1,0),求矩形DEFG的面積.
【答案】(1)A(2,0),B(-4,0),C(0,-4);(2)S矩形DEFG=12m-6m2(0<m<2);(3)k的取值范圍是k≠且k>0;(4)S矩形DEFG=6.
【解析】試題分析:(1)可任選三組坐標(biāo),用待定系數(shù)法即可求出拋物線P的解析式.然后根據(jù)拋物線P的解析式即可得出A、B、C三點(diǎn)的坐標(biāo);
(2)求矩形的面積需知道矩形的長和寬,可先在直角三角形AOC中,根據(jù)AD,OA,DG,CD的比例關(guān)系式,用m表示出DG的長,同理可在直角三角形BCO中表示出OE的長,進(jìn)而可根據(jù)ED=EO+OD得出ED的長,然后由矩形的面積公式即可得出S與m的函數(shù)關(guān)系式;
(3)根據(jù)(2)的函數(shù)關(guān)系式即可得出S的最大值及對應(yīng)的m的值.進(jìn)而可得出D,E,F,G的坐標(biāo).如果設(shè)DF的延長線交拋物線于N點(diǎn),那么可先求出FN與DF的比例關(guān)系.如果過N作x軸的垂線設(shè)垂足為H,那么我們可得出EF:DF=DF:DN,而EF,DF均為F,N點(diǎn)的縱坐標(biāo)的絕對值,因此要先求出N點(diǎn)的縱坐標(biāo),可先根據(jù)D、F的坐標(biāo)求出直線DF的解析式,然后聯(lián)立直線DF的解析式與拋物線P的解析式求出N點(diǎn)的坐標(biāo),然后根據(jù)上述比例關(guān)系求出FN、DF的比例關(guān)系,如果求出此時FN=k1DF,那么由于M不在拋物線上,因此k的取值范圍就是k>0,且k≠k1.
(4)由,AD=1,AO=2,OC=4,得到DG=2.又由,AB=6,CP=2,OC=4,得到FG=3,從而得到結(jié)論.
試題解析:解:(1)設(shè)y=ax2+bx+c(a≠0),任取x,y的三組值代入,得: ,解得: ,∴解析式為: ,令y=0,解得x1=﹣4,x2=2;
令x=0,得y=﹣4,∴A、B、C三點(diǎn)的坐標(biāo)分別是A(2,0),B(﹣4,0),C(0,﹣4).
(2)由題意得: ,而AO=2,OC=4,AD=2﹣m,故DG=4﹣2m,又,EF=DG,得BE=4﹣2m,∴DE=3m,∴SDEFG=DGDE=(4﹣2m)3m=12m﹣6m2(0<m<2).
(3)∵SDEFG=﹣6m2+12m=﹣6(m﹣1)2+6,(0<m<2),∴m=1時,矩形的面積最大,且最大面積是6.
當(dāng)矩形面積最大時,其頂點(diǎn)為D(1,0),G(1,﹣2),F(﹣2,﹣2),E(﹣2,0)。設(shè)直線DF的解析式為y=kx+b,易知,k=,b=﹣,∴。又因?yàn)閽佄锞P的解析式為: ,令,解得:x=.
設(shè)射線DF與拋物線P相交于點(diǎn)N,則N的橫坐標(biāo)為,過N作x軸的垂線交x軸于H,有,點(diǎn)M不在拋物線P上,即點(diǎn)M不與N重合時,此時k的取值范圍是k≠且k>0.
(4)∵,而AD=1,AO=2,OC=4,則DG=2.又∵,而AB=6,CP=2,OC=4,則FG=3,∴SDEFG=DGFG=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時,借助圖中的直角坐標(biāo)系,求此時大孔的水面寬度EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到△A′B′C,且點(diǎn)A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為( 。
A. 65°B. 60°C. 50°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面一列數(shù),探究其中的規(guī)律:—1,,,,,
(1)填空:第11,12,13三個數(shù)分別是 , , ;
(2)第2020個數(shù)是什么?
(3)如果這列數(shù)無限排列下去,與哪個數(shù)越來越近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù) (x>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積是9,則k的值是( )
A.B. C.D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年3月28日是全國中小學(xué)生安全教育日,某學(xué)校為加強(qiáng)學(xué)生的安全意識,組織了全校1500名學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
頻率分布表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.5 |
90.5~100.5 | 24 | n |
(1)這次抽取了 名學(xué)生的競賽成績進(jìn)行統(tǒng)計(jì),其中:m= ,n ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學(xué)生為安全意識不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四舍五入法按要求取近似數(shù):
(1)2367890(精確到十萬位);(2)29524(精確到千位);
(3)4.2046(精確到千分位);(4)3.102(精確到百分位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為-20,B點(diǎn)對應(yīng)的數(shù)為100.
請寫出AB中點(diǎn)M對應(yīng)的數(shù)。
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動。設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,你知道C點(diǎn)對應(yīng)的數(shù)是多少嗎?
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時,以6單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動。設(shè)兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,你知道D點(diǎn)對應(yīng)的數(shù)是多少嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(-3x2y2)2·(2xy)3÷(xy)2 (2)8(x+2)2-(3x-1)(3x+1)
(3) (π﹣3.14)0+|﹣2|﹣. (4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com