【題目】應(yīng)我市創(chuàng)建文明城市要求,某小區(qū)業(yè)主委員會決定把一塊長,寬的矩形空地建成,花園小廣場,設(shè)計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的直角三角形),空白區(qū)域為活動區(qū),且四周出口寬度-樣,其寬度不小于,不大于,預(yù)計活動區(qū)造價,綠化區(qū)造價,設(shè)綠化區(qū)較長直角邊為.
(1)求工程隊總造價 (元)與的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)如果業(yè)主委員會最多投資萬元,能否完成全部工程?若能,請寫出為整數(shù)的所有工程方案;若不能,請說明理由.
【答案】(1),;(2)能,所有工程方案如下:①較長直角邊為短直角邊為,出口寬度為;②較長直角邊為,短直角邊為,出口寬度為;③較長直角邊為,短直角邊為,出口寬度為
【解析】
(1)根據(jù)單位面積造價可得綠化區(qū)和活動區(qū)的費用,相加可得y與x的關(guān)系式,根據(jù)所有長度都是非負數(shù)列不等式組可得x的取值范圍;
(2)業(yè)主委員會投資28.4萬元,列不等式,結(jié)合二次函數(shù)的增減性可得結(jié)論.
解:(1)由題意得,
=
(2)
又因為
業(yè)主委員投資萬元,能完成全部工程.
所有工程方案如下:
①較長直角邊為,短直角邊為,出口寬度為
②較長直角邊為,短直角邊為,出口寬度為;
③較長直角邊為,短直角邊為,出口寬度為
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:①;②;③;④;⑤其中所有正確結(jié)論的序號是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一元二次方程理解錯誤的是( )
A.這個方程是一元二次方程B.方程的解是
C.這個方程有兩個不相等的實數(shù)根D.這個方程可以用公式法求解
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.動點M從點B出發(fā),在線段BA上以每秒3cm的速度點A運動,同時動點N從點C出發(fā),在線段CB上以每秒2cm的速度向點B運動,其中一點到達終點后,另一點也停止運動.運動時間為t秒,連接MN.
(1)填空:BM= cm.BN= cm.(用含t的代數(shù)式表示)
(2)若△BMN與△ABC相似,求t的值;
(3)連接AN,CM,若AN⊥CM,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平行四邊形ABCD中,對角線AC、BD交于點O,AB=AC,AB⊥AC,過點A作AE⊥BD于點E.
(1)若BC=6,求AE的長度;
(2)如圖②,點F是BD上一點,連接AF,過點A作AG⊥AF,且AG=AF,連接GC交AE于點H,證明:GH=CH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.
(1)當t為何值時,點Q與點D重合?
(2)當⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊BC上,AE∥BC,BE與AD、AC分別相交于點F、G, .
(1)求證:△CAD∽△CBG;
(2)聯(lián)結(jié)DG,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在以AB為直徑的⊙O上,AD平分,,過點B作⊙O的切線交AD的延長線于點E.
(1)求證:直線CD是⊙O的切線.
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com