【題目】如圖,已知ABO的直徑,直線CDO相切于C點,AC平分DAB

1)求證:ADCD;

2)若AD=2, ,求O的半徑R的長.

【答案】1)證明見解析;(2O的半徑R的長為.

【解析】試題分析:(1)連接OC,由題意得OCCD.又因為AC平分DAB,則1=2=DAB.即可得出ADOC,則ADCD;

2)連接BC,則ACB=90°,可證明ADC∽△ACB.則,從而求得R

試題解析:(1)證明:連接OC,

直線CDO相切于C點,ABO的直徑,

OCCD

AC平分DAB,

∴∠1=2=DAB

COB=21=DAB,

ADOC,

ADCD

2)連接BC,則ACB=90°,

ADCACB

∵∠1=2,3=ACB=90°

∴△ADC∽△ACB

R=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)生了求救信號,一艘在港口正東方向B處的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里/時的速度前往救援,求海警船到達事故船C處所需的大約時間.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F(xiàn)分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正確的序號是(把你認為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m,n滿足等式(m﹣8)2+2|n﹣m+5|=0.
(1)求m,n的值;
(2)已知線段AB=m,在直線AB上取一點P,恰好使AP=nPB,點Q為PB的中點,求線段AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某梯形上底長、下底長分別是x,y,高是6,面積是24,則y與x之間的關(guān)系式是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB為銳角,如圖(1).
(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如圖(2)所示,求∠AOB的度數(shù).
(2)若OM,OD,OC,ON是∠AOB的五等分線,如圖(3)所示,以射線OA,OM,OD,OC,ON,OB為始邊的所有角的和為980°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠BOC,OF平分∠AOC.

(1)若∠AOB=90°,∠AOC=40°,求∠EOF的度數(shù);
(2)若∠AOB=a,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式x2+a能用平方差公式在有理數(shù)范圍內(nèi)分解因式,那么在下列四個數(shù)中a可以等于( )

A. 9 B. 4

C. -1 D. -2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上點A在原點的左側(cè),且點A表示的數(shù)的絕對值是3,則點A表示的數(shù)是_______

查看答案和解析>>

同步練習(xí)冊答案