44、如圖所示,直線L1∥L2,C1,C2,C3是L1上的三點,連接C1A,C1B,C2A,C2B,C3A,C3B,得△C1AB,△C2AB,△C3AB,試說明△C1AB,△C2AB,△C3AB的面積相等.
分析:根據(jù)兩條平行線間的距離處處相等,再結合三角形的面積公式,可知:只要兩個三角形是等底等高的,則兩個三角形的面積相等.
解答:解:底相同,高相等,則三個三角形的面積相等.
點評:主要注意根據(jù)兩條平行線間的距離的概念可知:夾在兩條平行線間的距離處處相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,直線L1⊥L2,垂足為點O,A,B是直線L1上的兩點,且OB=2,AB=
2
.直線L1繞點O按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為a(0°<a<108°).當a在什么范圍內(nèi)變化時,直線L2上存在點P,使得△BPA是以∠B為頂角的等腰三角形,請用不等式表示a的取值范圍:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線l1⊥l2,垂足為點O,A,B是直線l1上的兩點,且OB=2,AB=
2
.直線l1繞點O按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α<180°).
(1)當α=60°時,在直線l2上找點P,使得△BPA是以∠B為頂角的等腰三角形,此時OP=
 

(2)當α在什么范圍內(nèi)變化時,直線l2上存在點P,使得△BPA是以∠B為頂角的等腰三精英家教網(wǎng)角形,請用不等式表示α的取值范圍:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖所示,直線l1∥l2,∠1=40°,則∠2為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①所示,直線l1:y=3x+3與x軸交于B點,與直線l2交于y軸上一點A,且l2與x軸的交點為C(1,0).
(1)求證:∠ABC=∠ACB;
(2)如圖②所示,過x軸上一點D(-3,0)作DE⊥AC于E,DE交y軸于F點,交AB于G點,求G點的坐標.
(3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點P(P不同于A、C兩點),過P點作一直線與AB的延長線交于Q點,與x軸交于M點,且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請求出它的長度;若變化,確定其變化范圍.

查看答案和解析>>

同步練習冊答案