【題目】如圖,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各內(nèi)角的度數(shù).

【答案】ABC各內(nèi)角的度數(shù)分別為64°、43°、73°.

【解析】

根據(jù)三角形外角性質得到∠FDE=BAD+∠ABD,而∠BAD=CBE,則∠FDE=BAD+∠CBE=ABC=64°;同理可得∠DEF=ACB=43°,然后根據(jù)三角形內(nèi)角和定理計算∠BAC=180°﹣ABCACB即可

∵∠FDE=BAD+∠ABD,BAD=CBE,∴∠FDE=BAD+∠CBE=ABC∴∠ABC=64°;

同理DEF=FCB+∠CBE=FCB+∠ACF=ACB,∴∠ACB=43°;

∴∠BAC=180°﹣ABCACB=180°﹣64°﹣43°=73°,∴△ABC各內(nèi)角的度數(shù)分別為64°、43°、73°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關系式;
(2)在給定的平面直角坐標系中,畫出這兩個函數(shù)的大致圖象;
(3)結合圖象直接寫出x2+bx+c>x+1時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿DE、EF翻折,頂點A,B均落在點O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個鈍角三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為智慧三角形.如,三個內(nèi)角分別為120°,40°,20°的三角形是智慧三角形”.如圖,∠MON=60°,在射線OM上找一點A,過點AABOMON于點B,以A為端點作射線AD,交射線OB于點C.

(1)ABO的度數(shù)為_____°,AOB_____(填不是”) “智慧三角形”;

(2)若∠OAC=20°,求證:△AOC智慧三角形”;

(3)當△ABC智慧三角形時,求∠OAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=BC,ACB=90°,點D、E在AB上,將ACD、BCE分別沿CD、CE翻折,點A、B分別落在點A′、B′的位置,再將A′CD、B′CE分別沿A′C、B′C翻折,點D與點E恰好重合于點O,則A′OB′的度數(shù)是( )

A.90° B.120° C.135° D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學活動小組為了調(diào)查居民的用水情況,從某社區(qū)的1500戶家庭中隨機抽取了30戶家庭的月用水量,結果如下表所示:

月用水量(噸)

3

4

5

7

8

9

10

戶 數(shù)

4

3

5

11

4

2

1

(1)求這30戶家庭月用水量的平均數(shù),眾數(shù)和中位數(shù);

(2)根據(jù)上述數(shù)據(jù),試估計該社區(qū)的月用水量;

(3)由于我國水資源缺乏,許多城市常利用分段計費的辦法引導人們節(jié)約用水,即規(guī)定每個家庭的月基本用水量為m(噸),家庭月用水量不超過m(噸)的部分按原價收費,超過m噸部分加倍收費,你認為上述問題中的平均數(shù)、眾數(shù)、中位數(shù)中哪一個量作為月基本用水量比較合理?簡述理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊場比賽,每場比賽都要分出勝負,每隊勝一場分, 負一場得分,積分超過分才能獲得參賽資格.

(1)已知甲隊在初賽階段的積分為分,甲隊初賽階段勝、負各多少場;

(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?

查看答案和解析>>

同步練習冊答案