【題目】340__430 ( 填“>”“<”或“=”)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,
∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
①若a、b互為相反數(shù),則a+b=0
②若cd互為倒數(shù),則cd=1
③在數(shù)軸上到原點距離為3.7個單位的點有兩個,表示的數(shù)為3.7和﹣3.7
④絕對值不大于4的整數(shù)有8個
⑤3的相反數(shù)是3x﹣1,則x=﹣.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要對一塊長60米,寬40米的矩形荒地ABCD進行綠化和硬化、設計方案如圖所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周圍的硬化路面寬都相等,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周圍的硬化路面的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD頂點C的坐標為(5,4),頂點A在x軸的正半軸上,反比例函數(shù)y=的圖象經(jīng)過AC與BD的交點E,與邊BC交于點F.
(1)求反比例函數(shù)的解析式;
(2)求直線AF的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上的任意一點,當△EFC為直角三角形時,求∠BEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com