【題目】計算下面各題
(1)計算:|1﹣ |+( 1﹣2cos30°.
(2)化簡:

【答案】
(1)解:|1﹣ |+( 1﹣2cos30°

= ﹣1+2﹣2×

= ﹣1+2﹣

=1


(2)解:

=

=

=


【解析】(1)本題涉及絕對值、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式化簡4個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果;(2)異分母分式加減法法則:把分母不相同的幾個分式化成分母相同的分式,叫做通分,經(jīng)過通分,異分母分式的加減就轉(zhuǎn)化為同分母分式的加減.
【考點精析】本題主要考查了分式的加減法和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握分式的加減法分為同分母的加減法和異分母的加減法.而異分母的加減法是通過"通分"轉(zhuǎn)化為同分母的加減法進行運算的;aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2﹣10ax+16a(a≠0)交x軸于A、B兩點,拋物線的頂點為D,對稱軸與x軸交于點H,且AB=2DH.

(1)求a的值;
(2)點P是對稱軸右側(cè)拋物線上的點,連接PD,PQ⊥x軸于點Q,點N是線段PQ上的點,過點N作NF⊥DH于點F,NE⊥PD交直線DH于點E,求線段EF的長;
(3)在(2)的條件下,連接DN、DQ、PB,當DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時,作NC⊥PB交對稱軸左側(cè)的拋物線于點C,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極開展“陽光體育”活動,共開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).

(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA勻速移動,當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動,DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,
設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.

(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算:( ﹣π)0﹣6tan30°+( 2+|1+ |.
(2)解不等式組 ,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉(zhuǎn),且邊DF,DE始終分別交△ABC的邊AB,AC于點H,G,圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對稱.連結(jié)HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點I,J.

(1)求證:△DHB∽△GDC;
(2)設(shè)CG=x,四邊形HH′G′G的面積為y,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍.
②求當x為何值時,y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,請用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點,其中點A的坐標為(﹣1,0),AB=4,請求出該二次函數(shù)的表達式及頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進甲、乙兩種服裝,每件甲種服裝比每件乙種服裝貴25元,該商場用2000元購進甲種服裝,用750元購進乙種服裝,所購進的甲種服裝的件數(shù)是所購進的乙種服裝的件數(shù)的2倍.
(1)分別求每件甲種服裝和每件乙種服裝的進價;
(2)若每件甲種服裝售價130元,將購進的兩種服裝全部售出后,使得所獲利潤不少于750元,問每件乙種服裝售價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案