【題目】下列從左邊到右邊的變形,是因式分解的是( 。

A.y5y6=(y6)(y+1B.a+4a3aa+4)﹣3

C.xx1)=xxD.m+n=(m+n)(mn

【答案】A

【解析】

根據(jù)因式分解的定義: 把一個(gè)多項(xiàng)式化為幾個(gè)最簡整式的乘積的形式,這種變形叫做因式分解,逐一判斷即可.

A. y5y6=(y6)(y+1符合因式分解的定義,A符合題意;

B. a+4a3aa+4)﹣3,化成的不是整式乘積的形式,B不符合題意;

C. xx1)=xx,是整式的乘法,不是因式分解, C不符合題意;

D. m+n=(m+n)(mn),等式右邊= mn,不是恒等變形,D不符合題意.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=10厘米,BC=6厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B3厘米/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A2厘米/秒的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t (秒)表示移動(dòng)的時(shí)間,那么:

(1)如圖1,用含t的代數(shù)式表示AP= ,AQ= .并求出當(dāng)t為何值時(shí)線段AP=AQ.

(2)如圖2,在不考慮點(diǎn)P的情況下,連接QB,問:當(dāng)t為何值時(shí)QAB的面積等于長方形面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚運(yùn)載火箭從距雷達(dá)站C5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C處測得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.求A,B兩點(diǎn)間的距離(結(jié)果精確到0.1km).

(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)m、n滿足等式,且m、n恰好是等腰△ABC的兩條邊的邊長,則△ABC的周長是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,DAB的中點(diǎn),E,F(xiàn)分別是AC,BC上的點(diǎn)(點(diǎn)E不與端點(diǎn)A,C重合),且AE=CF.

(1)求證:△ADE≌△CDF

(2)如圖2連接EF并取EF的中點(diǎn)O,連接DO并延長至點(diǎn)G,使GO=OD,連接DE,DF,GE,GF.求證:四邊形EDFG是正方形.

(3)當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最?直接寫出點(diǎn)E的位置及四邊形EDFG面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2008年實(shí)施國家知識(shí)產(chǎn)權(quán)戰(zhàn)略以來,我國具有獨(dú)立知識(shí)產(chǎn)權(quán)的發(fā)明專利日益增多.下圖顯示了2010﹣2013年我國發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重.根據(jù)統(tǒng)計(jì)圖提供的信息,下列說法不合理的是( 。

A. 統(tǒng)計(jì)圖顯示了2010﹣2013年我國發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重的情況

B. 我國發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重,由2010年的19.7%上升至2013年的32.1%

C. 2011年我國發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重是28%

D. 2010﹣2013年我國發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重逐年增長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,∠A30°,以點(diǎn)C為圓心,CB長為半徑作弧,交AB于點(diǎn)D;再分別以點(diǎn)B和點(diǎn)D為圓心,大于的長為半徑作弧,兩弧相交于點(diǎn)E,作射線CEAB于點(diǎn)F,若AF6,則BC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在自習(xí)課上,小明拿來如下框的一道題目(原問題)和合作學(xué)習(xí)小組的同學(xué)們交流.

如圖1,已知△ABC,∠ACB90°,∠ABC45°,分別以AB,BC為邊向外作△ABD與△BCE,且DADB,EBEC,∠ADB=∠BEC90°,連接DEAB于點(diǎn)F.探究線段DFEF的數(shù)量關(guān)系.

小紅同學(xué)的思路是:過點(diǎn)DDGAB于點(diǎn)G,構(gòu)造全等三角形,通過推理使問題得解.

小華同學(xué)說:我做過一道類似的題目,不同的是∠ABC30°,∠ADB=∠BEC60°

請(qǐng)你參考小明同學(xué)的思路,探究并解決以下問題:

1)寫出原問題中DFEF的數(shù)量關(guān)系為 

2)如圖2,若∠ABC30°,∠ADB=∠BEC60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點(diǎn)點(diǎn)出發(fā)沿路徑向終點(diǎn)的速度運(yùn)動(dòng),同時(shí)點(diǎn)點(diǎn)出發(fā)沿路徑向終點(diǎn)的速度運(yùn)動(dòng),兩點(diǎn)都要到達(dá)相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng).分別過,則當(dāng)運(yùn)動(dòng)時(shí)間____________時(shí),與去全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案