【題目】如圖,在中,為延長線上一點(diǎn),點(diǎn)在上,且,若,則的度數(shù)為__________.
【答案】
【解析】
根據(jù)HL證明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,根據(jù)等腰直角三角形的性質(zhì)求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=45°-29°=16°,即可求出答案.
解:∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△CBF和Rt△ABE中,
∴Rt△CBF≌Rt△ABE(HL)
∴∠FCB=∠EAB,
∵AB=AC,∠ABC=90°
∴∠CAB=∠ACB=45°,
∴∠BAE=∠CAB-∠CAE=45°-29°=16°,
∴∠FCB=∠EAB=16°,
∴∠ACF=∠FCB+∠CAB=16°+45°=61°
故答案為61°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)I是△ABC的角平分線的交點(diǎn).若AB+BI=AC,設(shè)∠BAC=α,則∠AIB=______(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點(diǎn),按順時(shí)針方向旋轉(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輪船在P處測得燈塔A在正北方向,燈塔B在南偏東30°方向,輪船向正東航行了900m,到達(dá)Q處,測得A位于北偏西60°方向, B位于南偏西30°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A、B間的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)為邊的中點(diǎn)
(1)如圖①,點(diǎn)分別為邊上的點(diǎn),且.若,則 ;若,則四邊形的面積為
(2)若點(diǎn)分別為延長線上的點(diǎn),且,那么嗎?請利用圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,-4),且與y軸交于點(diǎn)
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點(diǎn)A,B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC的中點(diǎn),四邊形ABDE是平行四邊形,AC,DE相交于點(diǎn)O.
(1)求證:四邊形ADCE是矩形;
(2)若∠AOE=60°,AE=2,求矩形ADCE對角線的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com