【題目】列方程解應(yīng)用題:

2018年10月24日港珠澳大橋正式開通,它是中國建設(shè)史上里程最長、投資最多、施工難度最大的跨海橋梁項目,體現(xiàn)了我國逢山開路、遇水架橋的奮斗精神,體現(xiàn)了我國綜合國力、自主創(chuàng)新能力,體現(xiàn)了我國勇創(chuàng)世界一流的民族志氣. 港珠澳大橋全長55公里,跨越伶仃洋,東接香港特別行政區(qū),西接廣東省珠海市和澳門特別行政區(qū),首次實現(xiàn)了珠海、澳門與香港的跨海陸路連接,極大地縮短了三地間的距離. 通車前,小亮媽媽駕車從香港到珠海的陸路車程大約220公里,如果行駛的平均速度不變,港珠澳大橋通車后,小亮媽媽駕車從香港到珠海所用的行駛時間比原來縮短了2小時15分鐘,求小亮媽媽原來駕車從香港到珠海需要多長時間.

【答案】小亮媽媽原來從香港到珠海大約需要3小時

【解析】

設(shè)小亮媽媽原來駕車從香港到珠海需要x小時,則現(xiàn)在駕車從香港到珠海需要(x-)小時,根據(jù)速度=路程÷時間結(jié)合速度不變,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗即可得出結(jié)論.

設(shè)小亮媽媽原來從香港到珠海大約需要小時,則現(xiàn)在駕車從香港到珠海需要(x-)小時.

根據(jù)題意,得 解得.

經(jīng)檢驗,是所列方程的解,并符合實際問題的意義.

答:小亮媽媽原來從香港到珠海大約需要3小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,E是線段AB的中點連接CE并延長交線段AD于點F

1)求證四邊形BCFD為平行四邊形;

2)若AB6求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 任意拋擲一個啤酒瓶蓋,落地后印有商標(biāo)一面向上的可能性大小是

B. 一個轉(zhuǎn)盤被分成8塊全等的扇形區(qū)域,其中2塊是紅色,6塊是藍(lán)色. 用力轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針對準(zhǔn)紅色區(qū)域的可能性大小是

C. 一個不透明的盒子中裝有2個白球,3個紅球,這些球除顏色外都相同. 從這個盒子中隨意摸出一個球,摸到白球的可能性大小是

D. 100件同種產(chǎn)品中,有3件次品. 質(zhì)檢員從中隨機(jī)取出一件進(jìn)行檢測,他取出次品的可能性大小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時的人們所注意,1875年,布洛卡點被一個數(shù)學(xué)愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=(
A.5
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數(shù),則點D的個數(shù)共有( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)證明:BC=DE;

(2)若AC=12,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊含有30°角的直角三角板ABC,在水平桌面上繞點C按順時針方向旋轉(zhuǎn)到A′B′C′的位置,若BC=12cm,則頂點A從開始到結(jié)束所經(jīng)過的路徑長為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校植物園沿路護(hù)欄的紋飾部分準(zhǔn)備設(shè)計成若干個形狀、大小完全相同的四邊形圖案,每平移一個圖案,紋飾長度就增加cm(如圖)所示,已知每個四邊形圖案的水平方向的對角線長30cm

1)若=26cm,且該紋飾要用231個四邊形圖案,求紋飾的長度

2)當(dāng)=20cm時,若保持(1)中紋飾長度不變,則需要多少個這樣的四邊形圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為ABC的的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EFAB,F(xiàn)為垂足下列結(jié)論①△ABD≌△EBC;②∠BCE+BCD=180°;AD=AE=EC;BA+BC=2BF其中正確的是

A①②③ B①③④ C①②④ D①②③④

查看答案和解析>>

同步練習(xí)冊答案