【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)了一款健身器材,可通過實體店和網(wǎng)上商店兩種途徑進行銷售,銷售了一段時間后,該企業(yè)對這種健身器材的銷售情況進行了為期30天的跟蹤調(diào)查,其中實體店的日銷售量y1(套)與時間x(x為整數(shù),單位:天)的部分對應(yīng)值如下表所示:
時間x(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日銷售量y(套) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)求出y1與x的二次函數(shù)關(guān)系式及自變量x的取值范圍
(2)若網(wǎng)上商店的日銷售量y2(套)與時間x(x為整數(shù),單位:天)的函數(shù)關(guān)系為,則在跟蹤調(diào)查的30天中,設(shè)實體店和網(wǎng)上商店的日銷售總量為y(套),求y與x的函數(shù)關(guān)系式;當x為何值時,日銷售總量y達到最大,并寫出此時的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年四月份,某校在孝感市爭創(chuàng)“全國文明城市” 活動中,組織全體學生參加了“弘揚孝感文化,爭做文明學生”知識競賽,賽后隨機抽取了部分參賽學生的成績,按得分劃分成 六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.
請根據(jù)圖表提供的信息,解答下列問題:
(1)本次抽樣調(diào)查樣本容量為 ,表中: , ;扇形統(tǒng)計圖中, 等級對應(yīng)的圓心角 等于 度;(4分=1分+1分+1分)
(2)該校決定從本次抽取的 等級學生(記為甲、乙、丙、。┲,隨機選擇 名成為學校文明宣講志愿者,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,廣場上一個立體雕塑由兩部分組成,底座是一個正方體,正上方是一個球體,且正方體的高度和球的高度相等.當陽光與地面的夾角成60°時,整個雕塑在地面上的影子AB長2米,求這個雕塑的高度.(結(jié)果精確到百分位,參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B(點A在點B的左側(cè)),與y軸交于點C(0,﹣3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求拋物線的函數(shù)解析式;
(2)求直線BC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA與⊙O相切于點A,過點A作AB⊥OP,垂足為C,交⊙O于點B.連接PB,AO,并延長AO交⊙O于點D,與PB的延長線交于點E.
(1)求證:PB是⊙O的切線;
(2)若OC=3,AC=4,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0),該函數(shù)y與自變量x的部分對應(yīng)值如下表:
x | … | 1 | 2 | 3 | … |
y | … | 0 | ﹣1 | 0 | … |
(1)求該二次函數(shù)的表達式;
(2)不等式ax2+bx+c>0的解集為 ;
不等式ax2+bx+c<3的解集為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com