(2006•河北)如圖是由邊長為1m的正方形地磚鋪設的地面示意圖,小明沿圖中所示的折線從A?B?C所走的路程為    m.
【答案】分析:由圖形可以開出AB=BC,要求AB的長,可以看到,AB、BC分別是直角邊為1、2的兩個直角三角形的斜邊,就可以運用勾股定理求出.
解答:解:折線分為AB、BC兩段,
AB、BC分別看作直角三角形斜邊,
由勾股定理得AB=BC==米.
小明沿圖中所示的折線從A?B?C所走的路程為+=米.
點評:命題立意:本題考查勾股定理的應用.
求兩點間的距離公式是以勾股定理為基礎的,網(wǎng)格中兩個格點間的距離當然離不開構造直角三角形,可以看到,AB、BC分別是直角邊為1、2的兩個直角三角形的斜邊,容易計算AB+BC=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學試卷(解析版) 題型:填空題

(2006•河北)如圖所示,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的點P處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省鹽城市鹽城中學初三年級中考模擬數(shù)學試卷2(解析版) 題型:解答題

(2006•河北)如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.在運動過程中,△PCQ關于直線PQ對稱的圖形是△PDQ.設運動時間為t(秒).
(1)設四邊形PCQD的面積為y,求y與t的函數(shù)關系式;
(2)t為何值時,四邊形PQBA是梯形;
(3)是否存在時刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時刻t,使得PD⊥AB?若存在,請估計t的值在括號中的哪個時間段內(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河北省中考數(shù)學試卷(課標卷)(解析版) 題型:選擇題

(2006•河北)如圖是華聯(lián)商廈某個月甲、乙、丙三種品牌彩電的銷售量統(tǒng)計圖,則甲、丙兩種品牌彩電該月的銷售量之和為( )

A.50臺
B.65臺
C.75臺
D.95臺

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河北省中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•河北)如圖,在四邊形ABCD中,AB=CD,BC=AD,若∠A=110°,則∠C=    度.

查看答案和解析>>

同步練習冊答案