【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.

(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.

【答案】
(1)證明:連接OD,CD,

∵BC為⊙O直徑,

∴∠BDC=90°,

即CD⊥AB,

∵△ABC是等腰三角形,

∴AD=BD,

∵OB=OC,

∴OD是△ABC的中位線,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

∵D點(diǎn)在⊙O上,

∴DE為⊙O的切線;


(2)解:∵∠A=∠B=30°,BC=4,

∴CD= BC=2,BD=BCcos30°=2 ,

∴AD=BD=2 ,AB=2BD=4 ,

∴SABC= ABCD= ×4 ×2=4 ,

∵DE⊥AC,

∴DE= AD= ×2 = ,

AE=ADcos30°=3,

∴SODE= ODDE= ×2× = ,

SADE= AEDE= × ×3= ,

∵SBOD= SBCD= × SABC= ×4 = ,

∴SOEC=SABC﹣SBOD﹣SODE﹣SADE=4 =


【解析】(1)證DE為⊙O的切線,就得證DE垂直過(guò)D點(diǎn)的半徑,為此連接OD、CD,可證出OD是△ABC的中位線可得OD∥AC,由已知可得證;
(2)結(jié)合圖形可知,SOEC=SABC﹣SBOD﹣SODE﹣SADE,所以先求出SABC、SBOD、SODE、SADE,為此利用三角函數(shù)的性質(zhì)求出BD、DE、AE的長(zhǎng),繼而求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時(shí)間t(單位:min),然后利用所得數(shù)據(jù)繪制成如圖不完整的統(tǒng)計(jì)圖表.
課外閱讀時(shí)間頻數(shù)分布表

課外閱讀時(shí)間t

頻數(shù)

百分比

10≤t<30

4

8%

30≤t<50

8

16%

50≤t<70

a

40%

70≤t<90

16

b

90≤t<110

2

4%

合計(jì)

50

100%


請(qǐng)根據(jù)圖表中提供的信息回答下列問(wèn)題:
(1)a= , b=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若全校有900名學(xué)生,估計(jì)該校有多少學(xué)生平均每天的課外閱讀時(shí)間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C 為線段 AD 上一點(diǎn),B CD 的中點(diǎn),AD=13cm,BD=3cm.

(1)圖中共有 條線段;

(2) AC 的長(zhǎng);

(3)若點(diǎn) E 在線段 AD 上,且 BE=2cm, AE 的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:
(1)將兩幅不完整的圖補(bǔ)充完整;
(2)本次參加抽樣調(diào)查的居民有多少人?
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x(時(shí))的關(guān)系可近似地用二次函數(shù)y=﹣200x2+400x刻畫;1.5小時(shí)后(包括1.5小時(shí))y與x可近似地用反比例函數(shù)y= (k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:
①喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)x=5時(shí),y=45,求k的值.
(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABO的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,3),B4,0),O0,0).

1)畫出將△ABO向左平移4個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后得到的△A1B1O1;

2)在(1)中,若△ABC上有一點(diǎn)M3,1),則其在△A1B1O1中的對(duì)應(yīng)點(diǎn)M1的坐標(biāo)為   

3)若將(1)中△A1B1O1看成是△ABO經(jīng)過(guò)一次平移得到的,則這一平移的距離是   ;

4)畫出△ABO關(guān)于點(diǎn)O成中心對(duì)稱的圖形△A2B2O

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠BAC=90°,AC=9,AB=12.按如圖所示方式折疊,使點(diǎn)B、C重合,折痕為DE,連接AE.求AECD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過(guò)50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AECD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E

1)求證:DCBE

2)連接BF,若BFAE,求證:△ADF≌△ECF

查看答案和解析>>

同步練習(xí)冊(cè)答案