【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象上有一點A(m,4),過點A作AB⊥x軸于點B,將點B向右平移2個單位長度得到點C,過點C作y軸的平行線交反比例函數(shù)的圖象于點D,CD=
(1)點D的橫坐標為(用含m的式子表示);
(2)求反比例函數(shù)的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人5次射擊命中的環(huán)數(shù)如下:
甲 | 7 | 9 | 8 | 6 | 10 |
乙 | 7 | 8 | 9 | 8 | 8 |
則以下判斷中正確的是( )
A. 甲= 乙 , S甲2=S乙2 .
B. 甲= 乙 , S甲2>S乙2 .
C. 甲= 乙 , S甲2<S乙2 .
D. 甲< 乙 , S甲2<S乙2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:德國著名數(shù)學(xué)家高斯被認為是歷史上最重要的數(shù)學(xué)家之一,并有"數(shù)學(xué)王子"的美譽.高斯從小就善于觀察和思考.在他讀小學(xué)時候就能在課堂上快速的計算出,今天我們可以將高斯的做法歸納如下:
令 ①
②
(右邊相加100+1=2+99=3+98=…..=100+1共100組)
①+②:有2S=101x100 解得:
(1)請參照以上做法,回答,3+5+7+9+…..+97= ;
請嘗試解決下列問題:
如下圖,有一個形如六邊形的點陣,它的中心是一個點,算第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.
(2)填寫下表:
層數(shù) | 1 | 2 | 3 | 4 |
該層對應(yīng)的點數(shù) | 1 | 6 | 12 | 18 |
所有層的總點數(shù)的和 | 1 | 7 | 19 |
①寫出第n層所對應(yīng)的點數(shù);(n≥2)
②如果某一層共96個點,求它是第幾層;
③寫出n層的六邊形點陣的總點數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在AB上,點M、N分別是AC、BC的中點,
(1)若AC=12cm,BC=10cm,求線段MN的長;
(2)若點C為線段AB上任意一點,滿足AC+BC=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若點C在線段AB的延長線上,且滿足AC-BC=bcm,點M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,并說明理由.請用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B都在數(shù)軸上,O為原點.
(1)點B表示的數(shù)是_________________;
(2)若點B以每秒2個單位長度的速度沿數(shù)軸向右運動,則2秒后點B表示的數(shù)是________;
(3)若點A、B分別以每秒1個單位長度、3個單位長度的速度沿數(shù)軸向右運動,而點O不動,t秒后,A、B、O三個點中有一個點是另外兩個點為端點的線段的中點,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我市社會經(jīng)濟的發(fā)展和交通狀況的改善,我市的旅游業(yè)得到了高速發(fā)展某旅游公司對我市一企業(yè)個人旅游年消費情況進行問卷調(diào)查隨機抽取部分員工,記錄每個人年消費金額,并將調(diào)查數(shù)據(jù)適當整理,繪制成如下兩幅尚不完整的表和圖:
組別 | 個人年消費金額元 | 頻數(shù) | 頻率 |
A |
| 18 |
|
B |
| a | b |
C |
|
|
|
D |
| 24 |
|
E |
| 12 |
|
合計 | c |
|
根據(jù)以上信息解答下列問題:
________; ________; ________;
補全頻數(shù)分布直方圖;
若這個企業(yè)有3000名員工,請你估計個人旅游年消費金額在6000元以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2 , 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 下列判斷: ①當x>2時,M=y2;
②當x<0時,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,則x=1.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
(2)在被調(diào)查的學(xué)生中,隨機抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計劃開設(shè)“實踐活動類”課程每班安排20人,問學(xué)校開設(shè)多少個“實踐活動類”課程的班級比較合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com