【題目】某施工工地安放了一個圓柱形飲水桶的木制支架(如圖1),若不計木條的厚度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值是cm.

【答案】30
【解析】解:連接OB,如圖,
當⊙O為△ABC的外接圓時圓柱形飲水桶的底面半徑的最大.
∵AD垂直平分BC,AD=BC=48cm,
∴O點在AD上,BD=24cm;
在Rt△0BD中,設(shè)半徑為r,則OB=r,OD=48﹣r,
∴r2=(48﹣r)2+242 , 解得r=30.
即圓柱形飲水桶的底面半徑的最大值為30cm.
所以答案是:30.

【考點精析】本題主要考查了勾股定理的概念和垂徑定理的推論的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對角線AB把四邊形ACBE分為△ABC和△ABE兩部分,如果△ABCBC邊上的高和△ABEBE邊上的高相等,且AC=AE.

(1)在原圖上畫出△ABCBC邊上的高AD與△ABEBE邊上的高AF;

(2)請你猜想BCBE的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某施工工地安放了一個圓柱形飲水桶的木制支架(如圖1),若不計木條的厚度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5分鐘儲存罐注滿,關(guān)閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當輸出的水泥總量達到8立方米時,關(guān)閉輸出口.儲存罐內(nèi)的水泥量y(立方米)與時間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲存罐內(nèi)注入的水泥量.

(2)當3≤x≤5.5時,求yx之間的函數(shù)關(guān)系式.

(3)儲存罐每分鐘向運輸車輸出的水泥量是   立方米,從打開輸入口到關(guān)閉輸出口共用的時間為   分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,弦AB所對的劣弧是圓周長的 ,其中圓的半徑為4cm,求:

(1)求AB的長.
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(2 ,1),射線AB與反比例函數(shù)圖象交與另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.

(1)求k和a的值;
(2)直線AC的解析式;
(3)如圖3,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于N,連接CM,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的面積為20,點EF,G為對角線AC的四等分點,連接BE并延長交ADH,連接HF并延長交BC于點M,則的面積為  

A. 10 B. C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩種型號的機器加工同一種零件,已知A型機器比B型機器每小時多加工20個零件,A型機器加工400個零件所用時間與B型機器加工300個零件所用時間相同.A型機器每小時加工零件的個數(shù)_____

查看答案和解析>>

同步練習冊答案