【題目】如圖,在正方形ABCD中,點(diǎn)E為AD的中點(diǎn),連接EC,過點(diǎn)E作EF⊥EC,交AB于點(diǎn)F,則tan∠ECF=

【答案】
【解析】解:∵四邊形ABCD是正方形, ∴AD=DC,∠A=∠D=90°,
∵AE=ED,
∴CD=AD=2AE,
∵∠FEC=90°,
∴∠AEF+∠DEC=90°,
∵∠DEC+∠DCE=90°,
∴∠AEF=∠DCE,∵∠A=∠D,
∴△AEF∽△DCE,
= =
∴tan∠ECF= =
所以答案是

【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì)和銳角三角函數(shù)的定義,掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波火車站北廣場將于2015年底投入使用,計(jì)劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC三邊長a=b=6,c=12.

(1)如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系,直接出點(diǎn)B,C的坐標(biāo).

(2)如圖2,過點(diǎn)C作MCN=45°交AB于點(diǎn)M,N,請證明AM2+BN2=MN2;

(3)如圖3,當(dāng)點(diǎn)M,N分布在點(diǎn)B異側(cè)時(shí),則(3)中的結(jié)論還成立嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知邊長為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為(
A.3
B.4﹣
C.4
D.6﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一學(xué)校為了解九年級(jí)學(xué)生某次體育測試成績,現(xiàn)對(duì)這次體育測試成績進(jìn)行抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C組所在的扇形的圓心角為36° 被抽取的體育測試成績頻數(shù)分布表

組別

成績

頻數(shù)

A

20<x≤24

2

B

24<x≤28

3

C

28<x≤32

5

D

32<x≤36

b

E

36<x≤40

20

合計(jì)

a

根據(jù)上面的圖表提供的信息,回答下列問題:

(1)計(jì)算頻數(shù)分布表中a與b的值;
(2)根據(jù)C組28<x≤32的組中值30,估計(jì)C組中所有數(shù)據(jù)的和為;
(3)請估計(jì)該校九年級(jí)學(xué)生這次體育測試成績的平均分(結(jié)果取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時(shí)間的函數(shù)圖象,請結(jié)合圖象解決下列問題:

(1)在剛出發(fā)時(shí),我公安快艇距走私船多少海里?

(2)計(jì)算走私船與公安艇的速度分別是多少?

(3)求出l1,l2的解析式.

(4)問6分鐘時(shí),走私船與我公安快艇相距多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧,交CD于點(diǎn)E,連接AE、BE.作BF⊥AE于點(diǎn)F.
(1)求證:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時(shí),結(jié)點(diǎn)D與點(diǎn)M重合,且點(diǎn)A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm

傘架

DE

DF

AE

AF

AB

AC

長度

36

36

36

36

86

86


(1)求AM的長.
(2)當(dāng)∠BAC=104°時(shí),求AD的長(精確到1cm). 備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

某校初二年級(jí)的同學(xué)乘坐大巴車去北京展覽館參觀“砥礪奮進(jìn)的五年”大型成就展,北京展覽館距離該校12千米,1號(hào)車出發(fā)3分鐘后,2號(hào)車才出發(fā),結(jié)果兩車同時(shí)到達(dá),已知2號(hào)車的平均速度是1號(hào)車的平均速度的1.2倍,求2號(hào)車的平均速度.

查看答案和解析>>

同步練習(xí)冊答案