【題目】如圖,在四邊形ABCD中,ADBCABBC,對角線AC、BD交于點(diǎn)O,BD平分∠ABC,過點(diǎn)DDEBC,交BC的延長線于點(diǎn)E,連接OE

1)求證:四邊形ABCD是菱形;

2)若DC2,AC4,求OE的長.

【答案】1)證明見解析;(24.

【解析】

1)由ADBC,BD平分∠ABC,可得ADAB,結(jié)合ADBC,可得四邊形ABCD是平行四邊形,進(jìn)而,可證明四邊形ABCD是菱形,

2)由四邊形ABCD是菱形,可得OCAC2,在RtOCD中,由勾股定理得:OD4,根據(jù)“在直角三角形中,斜邊上的中線等于斜邊的一半”,即可求解.

1)證明:∵ADBC

∴∠ADB=∠CBD,

BD平分∠ABC

∴∠ABD=∠CBD,

∴∠ADB=∠ABD

ADAB,

ABBC,

ADBC,

ADBC,

∴四邊形ABCD是平行四邊形,

又∵ABBC,

∴四邊形ABCD是菱形;

2)解:∵四邊形ABCD是菱形,

ACBD,OBODOAOCAC2,

RtOCD中,由勾股定理得:OD4,

BD2OD8,

DEBC,

∴∠DEB90°

OBOD,

OEBD4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為6的等邊中,是高所在直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動(dòng)的過程中,當(dāng)線段長度的最小值時(shí),的長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,ACB=,∠B=AC=1,BC=AB=2,AC在直線l上,將ABC繞點(diǎn)A順時(shí)針轉(zhuǎn)到位置①可得到點(diǎn)P1,此時(shí)AP1=2;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP2=2+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP3=3+,按此順序繼續(xù)旋轉(zhuǎn),得到點(diǎn)P2016,則AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l//AB,lAB之間的距離為2C、D是直線l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)CD點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BC、BD,將ABC沿BC折疊得到ABC.下列說法:①四邊形ABDC的面積始終為10;②當(dāng)AD重合時(shí),四邊形ABDC是菱形;③當(dāng)AD不重合時(shí),連接A、D,則∠CAD+BC A′=180°;④若以A、CB、D為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為37.其中正確的是( )

A. ①②③④B. ①③④C. ①②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PEAB E,PFAC FM EF 中點(diǎn),則 AM 的最小值為(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中裝有個(gè)形狀大小完全一樣的小球,上面分別有標(biāo)號,,用樹狀圖或列表的方法解決下列問題:

將球攪勻,從盒中一次取出兩個(gè)球,求其兩標(biāo)號互為相反數(shù)的概率.

將球攪勻,摸出一個(gè)球?qū)⑵錁?biāo)號記為,放回后攪勻后再摸出一個(gè)球,將其標(biāo)號記為.求直線不經(jīng)過第三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對稱軸為直線x=﹣1,點(diǎn)C在拋物線上,且位于點(diǎn)A、B之間(C不與A、B重合).若ABC的周長為m,四邊形AOBC的周長為 (用含m的式子表示).

查看答案和解析>>

同步練習(xí)冊答案