【題目】如圖所示,在平面直角坐標系中,四邊形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC與y軸相交于點M,且M是BC的中點,A,B,D三點的坐標分別是A(﹣1,0),B(﹣l,2),D(3,0).連接DM,并把線段DM沿DA方向平移到ON.若拋物線y=ax2+bx+c經(jīng)過點D,M,N.
(1)求拋物線的解析式.
(2)拋物線上是否存在點P,使得PA=PC?若存在,求出點P的坐標;若不存在,請說明理由.
(3)設拋物線與x軸的另一個交點為E,點Q是拋物線的對稱軸上的一個動點,當點Q在什么位置時有|QE﹣QC|最大?并求出最大值.
【答案】
(1)解:∵BC∥AD,B(﹣1,2),M是BC與y軸的交點,∴M(0,2),
∵DM∥ON,D(3,0),
∴N(﹣3,2),
則 ,
解得 ,
∴y=﹣ x2﹣ x+2
(2)解:方法一:連接AC交y軸于G,
∵M是BC的中點,
∴AO=BM=MC,AB=BC=2,
∴AG=GC,即G(0,1),
∵∠ABC=90°,
∴BG⊥AC,即BG是AC的垂直平分線,要使PA=PC,即點P在AC的垂直平分線上,故P在直線BG上,
∴點P為直線BG與拋物線的交點,
設直線BG的解析式為y=kx+b,
則 ,
解得 ,
∴y=﹣x+1,
∴ ,
解得 , ,
∴點P(3+3 ,﹣2﹣3 )或P(3﹣3 ,﹣2+3 )
方法二:∵M是BC的中點M(0,2),B(﹣1,2),
∴C(1,2),
設P(t,﹣ ),A(﹣1,0),C(1,2),
∵PA=PC,
∴(t+1)2+(﹣ )2=(t﹣1)2+(﹣ )2,
t2+2t+1+(﹣ )2+4(﹣ )+4=t2﹣2t+1+(﹣ )2,
∴t2﹣6t﹣9=0,t1=3+3 ,t2=3﹣3 ,
∴P1(3+3 ,﹣2﹣3 ),P2(3﹣3 ,﹣2+3 )
(3)解:方法一:∵y=﹣ x2﹣ x+2=﹣ (x+ )2+2 ,
∴對稱軸x=﹣ ,
令﹣ x2﹣ x+2=0,
解得x1=3,x2=﹣6,
∴E(﹣6,0),
故E、D關于直線x=﹣ 對稱,
∴QE=QD,
∴|QE﹣QC|=|QD﹣QC|,
要使|QE﹣QC|最大,則延長DC與x=﹣ 相交于點Q,即點Q為直線DC與直線x=﹣ 的交點,
由于M為BC的中點,
∴C(1,2),
設直線CD的解析式為y=kx+b,
則 ,
解得 ,
∴y=﹣x+3,
當x=﹣ 時,y= +3= ,
故當Q在(﹣ , )的位置時,|QE﹣QC|最大,
過點C作CF⊥x軸,垂足為F,
則CD= = =2
方法二:∵y=﹣ ,
∴對稱軸x=﹣ ,
∵點E與點D關于x=﹣ 對稱,
∴E(﹣6,0),QE=QD,
∴|QE﹣QC|=|QD﹣QC|,
要使|QE﹣QC|最大,延長DC與對稱軸交于點Q,即點Q為直線DC與直線x=﹣ 的交點,
∵D(3,0),C(1,2),
∴l(xiāng)DC:y=﹣x+3,
當x=﹣ 時,y= ,
∴Q(﹣ , ).
∴CD= .
【解析】(1)由已知BC∥AD,DM∥ON得出四邊形ODMN是平行四邊形,OD=BM,根據(jù)B(﹣1,2),D(3,0)就可以求出點M、點D的坐標,用待定系數(shù)法就可以求出拋物線的解析式。
(2)方法一:連接AC交y軸于G,根據(jù)M是BC的中點求出點C的坐標,根據(jù)A、B、C三點坐標判斷BG是AC的垂直平分線,再求出直線BG的解析式,與二次函數(shù)聯(lián)立,解方程組,即可求出點P的坐標;方法二:M是BC的中點,設出點P的坐標,根據(jù)勾股定理表示出PA、PC的長,根據(jù)PA=PC,建立方程,求解即可求出點P的坐標。
(3)方法一、由拋物線的對稱性可知QE=QD,當Q、C、D三點共線時|QE﹣QC|最大,再求出直線CD的函數(shù)解析式,再求出點Q的坐標,過點C作CF⊥x軸,垂足為F,此時|QE﹣QC|=CD,就可求出CD的長;方法二、找出點E關于拋物線對稱軸的對稱點D,連接DC與對稱軸的交點即為點Q。
【考點精析】本題主要考查了公式法和確定一次函數(shù)的表達式的相關知識點,需要掌握要用公式解方程,首先化成一般式.調整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之;確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠B=45°,則隧道開通后,汽車從A地到B地比原來少走千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“雙11”期間,某個體戶在淘寶網(wǎng)上購買某品牌A、B兩款羽絨服來銷售,若購買3件A,4件B需支付2400元,若購買2件A,2件B,則需支付1400元.
(1)求A、B兩款羽絨服在網(wǎng)上的售價分別是多少元?
(2)若個體戶從淘寶網(wǎng)上購買A、B兩款羽絨服各10件,均按每件600元進行零售,銷售一段時間后,把剩下的羽絨服全部6折銷售完,若總獲利不低于3800元,求個體戶讓利銷售的羽絨服最多是多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結果保留小數(shù)點后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.
(1)求每個籃球和每個排球的銷售利潤;
(2)已知每個籃球的進價為200元,每個排球的進價為160元,若該專賣店計劃用不超過17400元購進籃球和排球共100個,且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設計符合要求的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調往A縣10輛,需要調往B縣8輛,已知從甲倉庫調運一輛農(nóng)用車到A縣和B縣的運費分別為40元和80元;從乙倉庫調運一輛農(nóng)用車到A縣和B縣的運費分別為30元和50元.
(1)設乙倉庫調往A縣農(nóng)用車x輛,先填好下表,再寫出總運費y關于x的函數(shù)關系式;
(2)若要求總運費不超過900元,問共有幾種調運方案?
(3)求出總運費最低的調運方案,最低運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高足球基本功,甲、乙、丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次.
(1)請用樹狀圖列舉出三次傳球的所有可能情況;
(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當?shù)淖冃,可以解決很多的數(shù)學問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因為a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點C是線段AB上的一點,以AC、BC為邊向兩邊作正方形,設AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com