【題目】如圖,已知:拋物線y=a(x+1)(x﹣3)與x軸相交于A、B兩點,與y軸的交于點C(0,﹣3).
(1)求拋物線的解析式的一般式.
(2)若拋物線上有一點P,滿足∠ACO=∠PCB,求P點坐標.
(3)直線l:y=kx﹣k+2與拋物線交于E、F兩點,當點B到直線l的距離最大時,求△BEF的面積.
【答案】(1)y=x2﹣2x﹣3;(2)(4,5)或();(3)10
【解析】
(1)把C點坐標代入y=a(x+1)(x-3)中求出a的值即可得到拋物線解析式;
(2)分兩種情況,當點P在直線BC的下方時,過點B作BE⊥BC交CP的延長線于點E,過點E作EM⊥x軸于點M,由直角三角形的性質(zhì)可求得ME,BM長,求出點E的坐標,可求出直線CE的解析式,聯(lián)立直線和拋物線方程可求出點P的坐標;當點P在直線BC的上方時,過點B作BF⊥BC交CP于點F,同理求出點F的坐標和直線CF的解析式,聯(lián)立直線和拋物線方程可求得點P的坐標;
(3)求出直線y=kx-k+2恒過定點H(1,2),連結BH,當BH⊥直線l時,點B到直線l的距離最大時,求出此時k的值,可求出點E,F的坐標,則△BEF的面積可求出.
解:(1)把C(0,﹣3)代入y=a(x+1)(x﹣3),
得﹣3a=﹣3,解得a=1,
所以拋物線解析式為y=(x+1)(x﹣3),即y=x2﹣2x﹣3;
(2)當點P在直線BC的下方時,如圖1,過點B作BE⊥BC交CP的延長線于點E,過點E作EM⊥x軸于點M,
∵y=(x+1)(x﹣3),
∴y=0時,x=﹣1或x=3,
∴A(﹣1,0),B(3,0),
∴,
∵OB=OC=3,
∴∠ABC=45°,,
∵∠ACO=∠PCB,
∴,
∴,
∵∠CBE=90°,
∴∠MBE=45°,
∴BM=ME=1,
∴E(4,﹣1),
設直線CE的解析式為y=kx+b,
∴ ,
解得: ,
∴直線CE的解析式為 ,
∴ ,
解得, ,
把代入得,
∴ ,
當點P在直線BC的上方時,過點B作BF⊥BC交CP于點F,如圖2,
同理求出,FN=BN=1,
∴F(2,1),
求出直線CF的解析式為y=2x﹣3,
∴ ,
解得:x1=0,x2=4,
∴P(4,5).
綜合以上可得點P的坐標為(4,5)或();
(3)∵直線l:y=kx﹣k+2,
∴y﹣2=k(x﹣1),
∴x﹣1=0,y﹣2=0,
∴直線y=kx﹣k+2恒過定點H(1,2),如圖3,連結BH,當BH⊥直線l時,點B到直線l的距離最大時,
求出直線BH的解析式為y=﹣x+3,
∴k=1,
∴直線l的解析式為y=x+1,
∴ ,
解得: , ,
∴E(﹣1,0),F(4,5),
∴ .
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中的兩個圖形M與N,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形M,N間的“和睦距離”,記作d(M,N).若圖形M,N有公共點,則d(M,N)=0.
(1)如圖,A(0,1),C(3,4),⊙C的半徑為2,則d(C,⊙C)= ,d(O,⊙C)= ;
(2)已知,如圖,△ABC的一邊AC在x軸上,B在y軸上,且AC=8,AB=7,BC=5.
①D是△ABC內(nèi)一點,若AC、BC分別切⊙D于E、F,且d(C,D)=2d(D,AB),判斷AB與⊙D的位置關系,并求出D點的坐標;
②若以r為半徑,①中的D為圓心的⊙D,有d(B,⊙D)>1,d(C,⊙D)<2,直接寫出r的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD(四邊相等、四內(nèi)角相等)中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=4,BE=DF=3,則EF的平方為( 。
A.2B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是一款手機支架,忽略支管的粗細,得到它的簡化結構圖如圖(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE,GF⊥EF,支架可繞點O旋轉(zhuǎn),OE=20cm,EF=20cm.如圖(3)若將支架上部繞O點逆時針旋轉(zhuǎn),當點G落在直線CD上時,測量得∠EOG=65°.
(1)求FG的長度(結果精確到0.1);
(2)將支架由圖(3)轉(zhuǎn)到圖(4)的位置,若此時F、O兩點所在的直線恰好于CD垂直,點F的運動路線的長度稱為點F的路徑長,求點F的路徑長.
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段 AC=4,線段BC繞點C旋轉(zhuǎn),且BC=6,連結AB,以AB為邊作正方形ADEB,連結CD.
(1)若∠ACB=90°,則AB的值是____;
(2)線段CD長的最大值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出)如果從,個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有多少種不同的選擇方法?
(問題探究)為發(fā)現(xiàn)規(guī)律,我們采用一般問題特殊化的策略,先從最簡單的問題入手,再逐次遞進,最后得出一般性的結論.
探究一:如果從,個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),會有多少種不同的選擇方法?
當,時,顯然有種不同的選擇方法;
當,時,有,;,;,這種不同的選擇方法;
當,時,有________種不同的選擇方法;
……
由上可知:從個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有_______種不同的選擇方法.
探究二:如果從,個連續(xù)的自然數(shù)中選擇個,個……個連續(xù)的自然數(shù),分別有多少種不同的選擇方法?
我們借助下面的框圖繼續(xù)探究,發(fā)現(xiàn)規(guī)律并應用規(guī)律完成填空.
... |
從個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有_______種不同的選擇方法;
從個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有_______種不同的選擇方法;
……
從個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有_______種不同的選擇方法;
……
由上可知:如果從,個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有______種不同的選擇方法.
(問題解決)如果從,個連續(xù)的自然數(shù)中選擇個連續(xù)的自然數(shù),有_______種不同的選擇方法.
(實際應用)我們運用上面探究得到的結論,可以解決生活中的一些實際問題.
(1)今年國慶七天長假期間,小亮想?yún)⒓幽陈眯猩缃M織的青島兩日游,在出行日期上,他共有______種不同的選擇.
(2)星期天,小明、小強和小華三個好朋友去電影院觀看《我和我的祖國》,售票員李阿姨為他們提供了第七排號到號的電影票讓他們選擇,如果他們想拿三張連號票,則一共有______種不同的選擇方法.
(拓展延伸)如圖,將一個的圖案放置在的方格紙中,使它恰好蓋住其中的四個小正方形,共有______種不同的放置方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,,于點D,將繞點B順時針旋轉(zhuǎn)得到
如圖2,當時,求點C、E之間的距離;
在旋轉(zhuǎn)過程中,當點A、E、F三點共線時,求AF的長;
連結AF,記AF的中點為P,請直接寫出線段CP長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com