【題目】在圖(1)中,在中,,垂足為點,點從點出發(fā),以的速度沿射線運動,當點與點重合時,運動停止.過點作,垂足為點,將線段繞點順時針旋轉(zhuǎn),點在射線上的對應點為點,連接.若與的重疊部分面積為,點的運動時間為,關于的函數(shù)圖象如圖(2)所示(其中,,時,函數(shù)解析式不同).
(1)求的長;
(2)求關于的函數(shù)關系式,并寫出自變量的取值范圍.
【答案】(1);(2)當時,;當時,;當時,.
【解析】
(1)根據(jù)BC=,結合函數(shù)圖象即可求解;
(2)求出當與重合時,即,然后分三種情況討論:①當時,②當時,③當時,分別作出圖形,利用相似三角形的性質(zhì)求出相應線段的長度,然后列式整理即可.
解:(1)當時,;
(2)如圖1,當時,與重合,
則.
所以,,
∴,
∴,
∵∠C=∠C,∠CFE=∠CDA=90°,
∴,
∴,即,
∴,,
如圖2,當與重合時,,解得:,
所以,
①當時,
∵sin∠C=,
∴,
∴,CF=2t,
∴;
②當時,如圖3,作,同理可證,
∴,
∴,
∵,
∴AH=AG=,
∴,
∴;
③當時,如圖4,同理可證,
∴
∴,
∴,
綜上所述:當時,;當時,;當時,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點,且與軸交于點,點是拋物線的頂點,拋物線的對稱軸交軸于點,連接.
(1)求經(jīng)過,,三點的拋物線的函數(shù)表達式;
(2)點是線段上一點,當時,求點的坐標;
(3)在(2)的條件下,過點作軸于點,為拋物線上一動點,為軸上一動點,為直線上一動點,當以、、、為頂點的四邊形是正方形時,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形中,是邊上的兩個動點,且,連接,與交于點,連接交于點,連接,下列結論:①;②平分;③;④;⑤線段的最小值是.正確的個數(shù)有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是正方形ABCD邊CD上一點,連接AM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時太陽光線與水平面的夾角為32°,此時塔在建筑物的墻上留下了高3米的影子CD.中午12時太陽光線與地面的夾角為45°,此時塔尖A在地面上的影子E與墻角C的距離為15米(B、E、C在一條直線上),求塔AB的高度.(結果精確到0.01米)
參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?
(3)你認為哪個年級的學生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l:y=kx+b(k≠0)與反比例函數(shù)y的圖象的一個交點為M(1,m).
(1)求m的值;
(2)直線l與x軸交于點A,與y軸交于點B,連接OM,設△AOB的面積為S1,△MOB的面積為S2,若S1≥3S2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
(1)求證:不論為何值,該二次函數(shù)的圖像與軸總有公共點.
(2)求證:不論為何值,該二次函數(shù)的圖像的頂點都在函數(shù)的圖像上.
(3)已知點、,線段與函數(shù)的圖像有公共點,則的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com