(2011•北京)在?ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
解:(1)如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)∠BDG=45°
(3)解:分別連接GB、GE、GC,

∵AD∥BC,∠ABC=120°
∴∠ECF=∠ABC=120°
∵FG∥CE且FG=CE,
∴四邊形CEGF是平行四邊形,
由(1)得CE=CF.
∴四邊形CEGF是菱形,
∴GE=EC,①
∠GCF=∠GCE=∠ECF=60°,
∴△ECG是等邊三角形.
∴EG=CG,∠GEC=∠EGC,
∴∠GEC=∠FGC,
∴∠BEG=∠DCG,②
由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,
∴AB=BE,
在?ABCD中,AB=DC,
∴BE=DC,③
由①②③得△BEG≌△DCG,
∴BG=DG,∠1=∠2
∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°,
∴∠BDG==60°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011?德州)如圖,D,E,F(xiàn)分別為△ABC三邊的中點,則圖中平行四邊形的個數(shù)為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一等腰梯形兩組對邊中點連線段的平方和為8,則這個等腰梯形的對角長為_  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖11,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點C落在點C′的位置,BC′交AD于點G.
(1)求證:AG=C′G;
(2)如圖12,再折疊一次,使點D與點A重合,的折痕EN,EN角AD于M,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•濰坊)已知正方形ABCD的邊長為a,兩條對角線AC、BD相交于點O,P是射線AB上任意一點,過P點分別作直線AC、BD的垂線PE、PF,垂足為E、F.

(1)如圖1,當P點在線段AB上時,求PE+PF的值.
(2)如圖2,當P點在線段AB的延長線上時,求PE﹣PF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形的兩條對角線的長分別是6cm和8cm,則菱形的周長是__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABCD中,點E、F分別在邊AD、BC上,且BEDF,若∠EBF=45°,則∠EDF的度數(shù)是__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,E是BC延長線上一點,且CE=BD,則∠DAE的度數(shù)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把直角梯形沿方向平移得到梯形相交于點,=20cm,=5cm,=4cm,圖中陰影部分的面積與哪個四邊形的面積相等,并求出陰影部分的面積

查看答案和解析>>

同步練習(xí)冊答案