(2013•重慶)如圖,一個圓心角為90°的扇形,半徑OA=2,那么圖中陰影部分的面積為(結果保留π)
π-2
π-2
分析:先根據(jù)扇形面積公式計算出扇形面積,然后計算出三角形AOB的面積,繼而用扇形面積-三角形面積可得出陰影的面積.
解答:解:S扇形=
R2
360
=
90π×4
360
=π,
S△AOB=
1
2
×2×2=2,
則S陰影=S扇形-S△AOB=π-2.
故答案為:π-2.
點評:本題考查了扇形面積的計算,難度一般,解答本題的關鍵是熟練掌握扇形面積的計算公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,CD=3cm,則AF的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,矩形紙片ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿AE對折,使得點B落在邊AD上的點B1處,折痕與邊BC交于點E,則CE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足為D,CD=1,則AB的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標.

查看答案和解析>>

同步練習冊答案